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G R W N e

Simple Summary: Segmentation of brain tumor images from magnetic resonance imaging (MRI)
is a challenging topic in medical image analysis. The brain tumor can take many shapes, and MRI
images vary considerably in intensity, making lesion detection difficult for radiologists. This paper
proposes a three-step approach to solving this problem: (1) pre-processing, based on morphological
operations, is applied to remove the skull bone from the image; (2) the particle swarm optimization
(PSO) algorithm, with a two-way fixed-effects analysis of variance (ANOVA)-based fitness function,
is used to find the optimal block containing the brain lesion; (3) the K-means clustering algorithm is
adopted, to classify the detected block as tumor or non-tumor. An extensive experimental analysis,
including visual and statistical evaluations, was conducted, using two MRI databases: a private
database provided by the Kouba imaging center—Algiers (KICA)—and the multimodal brain tumor
segmentation challenge (BraTS) 2015 database. The results show that the proposed methodology
achieved impressive performance, compared to several competing approaches.

Abstract: Segmentation of brain tumor images, to refine the detection and understanding of abnormal
masses in the brain, is an important research topic in medical imaging. This paper proposes a new
segmentation method, consisting of three main steps, to detect brain lesions using magnetic resonance
imaging (MRI). In the first step, the parts of the image delineating the skull bone are removed, to
exclude insignificant data. In the second step, which is the main contribution of this study, the
particle swarm optimization (PSO) technique is applied, to detect the block that contains the brain
lesions. The fitness function, used to determine the best block among all candidate blocks, is based
on a two-way fixed-effects analysis of variance (ANOVA). In the last step of the algorithm, the
K-means segmentation method is used in the lesion block, to classify it as a tumor or not. A thorough
evaluation of the proposed algorithm was performed, using: (1) a private MRI database provided by
the Kouba imaging center—Algiers (KICA); (2) the multimodal brain tumor segmentation challenge
(BraTS) 2015 database. Estimates of the selected fitness function were first compared to those based
on the sum-of-absolute-differences (SAD) dissimilarity criterion, to demonstrate the efficiency and
robustness of the ANOVA. The performance of the optimized brain tumor segmentation algorithm
was then compared to the results of several state-of-the-art techniques. The results obtained, by using
the Dice coefficient, Jaccard distance, correlation coefficient, and root mean square error (RMSE)
measurements, demonstrated the superiority of the proposed optimized segmentation algorithm
over equivalent techniques.

Keywords: brain tumor; image segmentation; PSO; ANOVA; K-means

Cancers 2022, 14, 4399. https:/ /doi.org/10.3390/ cancers14184399

https://www.mdpi.com/journal/cancers


https://doi.org/10.3390/cancers14184399
https://doi.org/10.3390/cancers14184399
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-0437-1143
https://orcid.org/0000-0002-6798-6914
https://orcid.org/0000-0002-6392-7693
https://doi.org/10.3390/cancers14184399
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers14184399?type=check_update&version=2

Cancers 2022, 14, 4399

2 of 32

1. Introduction
1.1. What Is a Brain Tumor?

A brain tumor is a cluster of uncontrolled cancer cells that grow in or around the
brain. Brain tumors are divided into two categories: primary tumors, originating in the
brain or spinal cord, and secondary tumors, also called brain metastases, which develop
elsewhere in the body and spread to the brain [1]. In the first category (i.e., primary
tumors), the probability of a person developing this type of tumor in their lifetime is less
than 1% [2]. This probability is low; however in 2020, for example, it still represented just
over 308,000 people diagnosed worldwide [3]. A figure that should also alert us, is the
increased incidence of brain tumors at all ages over the last 20 years. For example, the
incidence has increased by more than 40% in adults. In the second category (i.e., secondary
tumors), the cancers that most often spread to the brain are breast, kidney, and lung cancers,
as well as leukemia, lymphoma, and melanoma [4].

A brain tumor can take many forms; it is therefore difficult for radiologists and physi-
cians to diagnose it indisputably, because medical imaging images can vary in intensity.
Several approaches for detecting and segmenting brain tumors from magnetic resonance
imaging (MRI) images have been proposed in the literature, to help practitioners make
their diagnoses [5,6].

In addition to MRI, functional ultrasound is a modality that is gaining recognition
in medicine. Functional ultrasound can allow the imaging of the neuronal activity of the
brain in small, awake, and mobile animals. Nevertheless, such a modality requires long
ultrasound acquisitions at high frequency, to have an acceptable sensitivity; hence, possible
material constraints [7].

During brain tumor surgery, two types of difficulties may arise: (i) identification of the
tumor and its boundaries related to the healthy brain; (ii) identification of functional brain
regions, i.e., those involved in neurological functions (skills, sensitivity, language, vision,
cognition, etc.). The standard gold method currently used to improve the quality of brain
tumor resection, while minimizing neurological risk, is so-called ‘standby’ surgery with
direct electrical brain stimulation. Practitioners commonly use ultrasound to localize the
tumor in the brain; however, to date, there are no pre- or intra-operative imaging tools to
identify functional brain regions [8]; hence the need for innovative imaging in this area,
such as high-frequency Doppler ultrasound, in the surgical management of patients with
awake brain tumors. Ultrahigh frequency achieves a spatial resolution of 30 um, and is
thus more than five times better than MRI. The Doppler mode [9-12] detects microvascular
flows at velocities less than 1 mm/second.

Gliomas are the most common primary brain tumors in adults. Nearly 3000 new
cases are diagnosed each year in France. Men are more frequently affected. Most cases are
sporadic, but in rare cases they are associated with certain family cancers [13,14].

About 75% of gliomas diagnosed are high-grade (Il or IV of the World Health Organi-
zation (WHO) classification) [15].

Gliomas can develop in any region of the brain. They progressively infiltrate the brain
parenchyma, and cause a mass effect.

Today, if the clinical examination should suggest a tumoral process, the diagnosis
of a brain tumor relies on magnetic resonance imaging (MRI), due to its shooting in all
orientations, its intrinsic 3D, its non-use of ionizing radiation, and its precision.

1.2. MRI Sequences for Brain Tumors

Brain MRI, with or without the injection of contrast products such as gadolinium, is
systematic in cases of a suspected brain tumor. Brain MRI enables:

- the localization of the expansive process of the tumor, and the specification of its
local extension;

- the specification of its characteristics, e.g., is it homogeneous or heterogeneous; is
there perilesional edema, calcifications, necrosis, or intratumoral hemorrhage?;
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- the establishment of a differential diagnosis between a brain tumor and a circum-
scribed lesion of another nature, e.g., an abscess;

- the establishment of the diagnosis of certain evolving tumor complications (hemor-
rhage, hydrocephalus, tumor meningitis, etc.).

- the establishment of the histological grade, in cases of a glial tumor;

- the definition of the quality of the tumor removal, and the continuation of the thera-
peutic strategy after the surgical time.

The most common MRI sequences are T1- and T2-weighted scans, where T1 and T2
are tissue-specific time constants.

T1-weighted images are produced using short TE and TR times, and vice versa for
T2-weighted images, where TR is the repetition time, defined as the time interval between
two excitations, and TE is the echo time, defined as the interval between the excitation and
the appearance of the MRI signal. Generally, T1- and T2-weighted images can be easily
differentiated, by observing the cerebrospinal fluid (CSF). The CSF is dark on T1-weighted
images, and clear on T2-weighted images.

A third sequence that we will use in our work is the FLAIR sequence (i.e., fluid
attenuated inversion recovery), which is an inversion-recovery sequence well-adapted to
brain imaging, in which the cerebrospinal fluid signal is suppressed or strongly attenuated,
and a long TE is used, to give it a solid T2 weighting. The FLAIR sequence has significantly
improved the detection of brain parenchymal lesions, particularly those located at the
parenchymal-CSF interface. White-matter pathologies (softening, demyelination processes,
etc.) appear hyperintense. This sequence is particularly interesting for the early diagnosis
of ischemic events; it allows us to obtain an image of excellent definition in a few minutes
and can, contrary to the diffusion or perfusion sequences that we will not use in this work,
be performed on all MRI machines. Currently available in 3D volume acquisition, it is part
of the basic MRI workup of the brain.

Table 1 compares T1, T2, and FLAIR sequences in the context of brain tissue consisting
of gray matter, CSF, and white matter.

Table 1. Analysis of basic MRI sequences in the context of brain tumors.

Tissue T1-Weighted T2-Weighted FLAIR
White Matter Light Dark Gray Dark Gray
Fat Bright Light Light
CSF Dark Bright Dark
Inflammation Dark Bright Bright
Cortex Gray Light Gray Light Gray

Figure 1A shows an example of a FLAIR MRI sequence where a cyst is highlighted (see
arrow); Figure 1B illustrates a cross-section in the axial plane of the human brain. Interestingly,
the FLAIR sequence is very ‘sensitive’ to pathology, and clearly detects the cyst.

Meninges

Cerebrum Thalamus

Cerebellum

Brain stem

Figure 1. (A) MRI of the brain: axial FLAIR section. A thin-walled cyst-like image (arrow) consistent
with an ependymal cyst can be seen in the occipital extension of the left lateral ventricle. (B) Brain
cross-section (illustration).
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FLAIR

Figure 2 shows an example of three MRI sequences: T1-Weighted, T2-Weighted, and
FLAIR; in Figure 3, we have represented a T1-Weighted MRI sequence (noted simply ‘“T1)
with and without contrast medium. The T1 sequence with contrast medium is noted “T1c'—
sometimes noted “T1-Gd’, when the contrast agent is Gadolinium. This image represents a
metastatic malignant melanoma. T1-weighted MRI shows multiple secondary lesions that
are spontaneously hyper-signal. After injection of a contrast medium, the T1c image shows
that the lesions have been enhanced, and are therefore better visualized, and new lesions
are detected.

FLAIR

Figure 3. Comparison between a T1-Weighted MRI sequence without a contrast agent (T1) and the
same sequence with a contrast agent (T1c).

Figure 4 shows an example of MRI sequences from the BraTS 2015 database [16],
representing brain tumor pathologies. These sequences are FLAIR, T1, Tlc (or, more
precisely, T1-Gd, because the contrast agent used is Gadolinium), T2, and Ground Truth
performed by specialists on which the FLAIR sequence is superimposed. The colors
represent classes of tumors: red for necrosis; green for edema; and yellow for tumor.

Tlc (or T1-Gd) T2 GT on FLAIR

Figure 4. MRI sequences of brain tumors: FLAIR, T1, T1 contrasted by Gadolinium injection, T2, and
Ground Truth superimposed on the FLAIR sequence.
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1.3. Why We Should Be Interested in Brain Tumor Segmentation?

Image segmentation is the action of grouping pixels according to predefined criteria,
in order to build regions or classes of pixels. There are several methods of image segmen-
tation: methods based on contours, regions, classification, or hybrid. Segmentation and
its automation remain today one of the major challenges in MRI, mainly in relation to
brain tumor images, in order to help the practitioner in his daily practice, in the presence
of a huge volume of images. These segmentation methods have long been manual or
semi-automatic but, with the advent of new methods, some are now fully automated.

The segmentation of brain tumors is vital, because the patient’s life depends on it; the
direct implication of our research is to propose efficient and safe methods to respond to this
delicate operation fully. Indeed, the segmentation of brain tumors from MRI images, pre-
sented in our work, has direct practical implications for establishing an efficient diagnosis,
following the tumor’s progression, or for evaluating the relevance of the prescribed treat-
ment and therapy. It is well known that manual segmentation and analysis of structural MRI
images of brain tumors is tedious and time-consuming; therefore, automated and robust seg-
mentation of brain tumors will have a significant impact on disease management, by providing
essential information about the nature, volume, location, and shape of the tumor [17,18].

Figure 5 shows an example of successful segmentation. The Ground Truth segmen-
tation is a manual segmentation performed by experts, and globally it corresponds to
the proposed automatic segmentation (see Section 4 on the experimental analysis). The
visualized MRI sequences are from the BraTS 2015 database, and correspond to T1, T2, Tlc,
and FLAIR sequences.

Ground Truth _Segmentation
Figure 5. Segmentation result (see Section 4): MRI sequences: T1, T2, Tlc, FLAIR, Ground Truth,
and segmentation.

Figure 6 shows the detection result (center image) of our approach, from a T1 MRI sequence
with contrast medium (left image) and segmentation (in green) binarization (right image).

Detection result Segmentation

(binary mask)

Figure 6. Segmentation result (see Section 4): Tlc, automatic detection of brain tumors, segmentation,
and binarization.
1.4. Brain Tumor Segmentation Algorithms

As reported in [19], brain tumor segmentation algorithms can be grouped into three
main categories: (1) conventional techniques; (2) classification and clustering techniques;
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and (3) deformable model techniques [20,21]. Threshold-based techniques, which compare
pixel intensity to one or more intensity thresholds, belong to the first category: conventional
techniques [22,23]. For example, an Otsu thresholding approach, combined with some
morphological operations (i.e., dilation and erosion), was proposed in [24], to detect brain
tumor diseases from MRI images. An extended method that would give more accurate
thresholding performance was proposed in [25]. In addition, region-based techniques, in
which disjoint regions are formed by merging neighboring pixels, based on a similarity
criterion, are also classified in the first category [26]; these techniques include region-
growth and watershed segmentation techniques. For example, an adaptive region-growing
approach was proposed in [27], to solve the problem of manual threshold selection and
weakness against noise; this approach was based on the variances and gradients of the inter-
and intra-boundary curves. In another work, [28], the authors presented a region-growth
approach based on a fixed threshold value for MRI segmentation, enhanced by an efficient
pre-processing framework. In work presented by Biratu et al. [29], the authors modified
the principle of the classical region-growing segmentation method; they applied it to the
detection of abnormality regions in brain images. The seed point initialization, in the
suggested method, was designed to be generated automatically for any input brain images,
in contrast to the classical approach, where the seed point should be initialized manually.
Khosravanian et al. [30] suggested a level set segmentation technique, based on the super-
pixel fuzzy clustering and lattice Boltzmann method for autonomously segmenting brain
tumors, which is strongly resistant to image intensity and noise.

The second category of brain tumor segmentation algorithms—classification and clus-
tering techniques—includes several effective algorithms [31], such as K-means, support
vector machines (SVMs), Markov random fields, artificial neural networks, convolutional
neural networks (CNNs), and fuzzy C-means. For example, an SVM classification scheme,
combined with a kernel-space feature selection methodology, was proposed in [32] for brain
tumor segmentation. An unsupervised framework, based on random forests, was proposed
in [33], to extract the tumor location, followed by a pattern classification phase. To define the
tumor area, 86 features were used to create a training dataset, to be presented as input to the
classifier. Currently, CNNs, or deep-learning-based models, have performed impressively
in several medical imaging applications [34-36], as they assist in understanding complex
patterns precisely. For example, a fully supervised system for brain tumor segmentation,
based on a CNN architecture that exploits local and global contextual features, was pro-
posed in [37]. In a recently published paper [38], fast convolutional neural networks were
used to train, classify, and distinguish tumor from non-tumor patterns; training focused
on patches and slices of axial, coronal, and sagittal brain views. Hussain et al. [39] created
a correlation architecture of a parallel CNN layer and a linear CNN layer, by including
an induction structure. Segmenting MR images of brain tumors, using this structure, has
produced positive results. Using unpaired adversarial training, Li et al. [40] developed the
innovative framework called TumorGAN, to provide efficient image segmentation of pairs.
They added a regional perceptual loss, to improve the discriminator’s performance and
the quality of the output images. Additionally, they created a localized L1 loss, to limit the
color of the observed brain tissue. Arora et al. [41] proposed an automatic system to tackle
the task of segmenting gliomas from MRI scans, based on a U-Net-based deep-learning
model. Before presenting the input image to the deep model, the system transformed it by
applying various approaches, including feature scaling, subset division, restricted object
region, category brain slicing, and watershed segmentation. An approach for automatic
segmentation, based on texture and contour, was proposed by Nabizadeh and Kubat [42].
The machine learning classifier was trained using landmark points, after determining
high-level features. In the present work, we opted for K-means, which is an unsupervised
learning model applying non-hierarchical data partitioning. This algorithm categorizes the
data into multiple clusters, respecting the principle of exclusivity of membership: a single
observation can only belong to one cluster. The advantage of K-means lies in its simplicity
and the fact that it is used daily in the socio-economic world for data segmentation.
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The third category of brain tumor segmentation algorithms consists of deformable
model techniques, including parametric and geometric deformable models. These tech-
niques have been proposed, among other things, to support intuitive interaction and high
variability of mechanisms. For example, metaheuristic techniques have also been used
for brain tumor segmentation, exploiting their ability to solve challenging optimization
problems in minimal time, while avoiding local optima. Several techniques for brain tumor
segmentation based on metaheuristics have been reported in the literature [43,44]. In [43],
the Cuckoo search algorithm, an efficient optimization model, was applied to brain tumor
segmentation, from MRI images. The ant colony optimization metaheuristic and a fuzzy
classification approach were combined in [44], to segment and extract the suspicious region
from the brain MRI image containing the tumor position. In a recent paper, [6], the authors
proposed a novel region of interest (ROI)-based brain tumor segmentation method. The
region of interest was first identified, using grid decomposition, and then only the region
of interest was segmented, using the spectral clustering method. Segmenting the brain
tumor from a region of interest, rather than from the entire image, is an attractive con-
cept. Nevertheless, this approach was limited by the increased computational complexity
resulting from the ROI identification step. In this study, we performed an analysis of
variance (ANOVA) on the data, to quantify the differences between the results. ANOVA
is a statistical method generally used to assess the similarity of means in different groups,
by comparing variances [45,46]. The main advantages of ANOVA over other statistical
methods lie in the following four points:

1.  Itis easy to implement, using simple algebra.

2. It can be used to compare more than two samples.

3. It can be applied to groups with different numbers of observations.

4. It has been widely used, and has proven effective in various research fields, such as
pharmacology and medicine.

1.5. Main Contributions

This paper proposes an original brain tumor segmentation method, based on the
particle swarm optimization (PSO) technique that uses fixed two-way ANOVA as the
fitness function. The segmentation of a brain tumor is vital, because the patient’s life
depends on it, and therefore the fundamental motivation of our work was to identify
efficient and safe methods of responding to this delicate operation fully. This objective was
achieved by our choice of PSO with ANOVA. The proposed algorithm consisted of three
main steps:

1. The first step was to remove the skull bones from the image, to eliminate unnecessary
information.

2. In the second step, which was the main contribution of this study, the PSO technique
was applied, to detect the lesion’s brain image block. The two-way fixed ANOVA
technique used a fitness function to determine the best among all candidate blocks,
resulting in automatic brain tumor segmentation comparable to the Ground Truth
performed by radiologists. All image blocks were tested, and the one that gave the
minimum variance was considered. To overcome the computational complexity, PSO
was used as a metaheuristic technique, that identified the best block in minimum time.
The choice of PSO was based on the high performance of this optimization technique,
when applied to many real-world applications. The satisfactory solution to a complex
optimization problem, which includes many sub-optimal solutions, justified using a
powerful metaheuristic, like PSO. The PSO algorithm, which is simple to understand,
program, and use in minimal time, is particularly effective for practical optimization
problems, such as image segmentation [47]. Therefore, the problem was posed as a
maximization of a fitness function, and the well-known ANOVA method was chosen
to measure the variance between the candidate block and the non-diseased block.

3. Inthe final step, K-means clustering—an efficient and straightforward partitioning
technique—was applied to the lesion block, to classify it as tumor or non-tumor.
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Our approach was original; to date, no other research has considered the techniques that
were chosen, to provide a satisfactory answer to the segmentation of brain tumors. Therefore,
the strengths of our approach were the originality and the quality of the results obtained.

To illustrate the essential role of ANOVA in the proposed algorithm, the experimental
results obtained with the ANOVA-based fitness function were compared to those obtained
with the well-known dissimilarity criterion, the sum of absolute differences (SAD). The
comparison results—set against classical segmentation algorithms and recently published
papers (i.e., state-of-the-art approaches), and using a private database provided by the
Kouba imaging center, Algiers (KICA), and the multimodal brain tumor segmentation
challenge (BraTS) 2015 database—demonstrated the efficiency and robustness of ANOVA.

The remainder of the paper is organized as follows: Section 2 presents the background
of the method we propose here; in Section 3, the proposed algorithm is presented in
detail, as well as the reasons for using PSO and ANOVA as the underlying techniques; the
experimental results, and a comparison to the state-of-the-art, are presented in Section 4; a
conclusion, summarizing the work, is given in Section 5.

2. Review of the Background of the Proposed Approach

The employed algorithm used different methods to segment the brain tumor image.
The PSO metaheuristic technique was applied to identify the ROI, and the fitness function
that determined the best block that could be considered as ROI was based on ANOVA.
Finally, the K-means method was used to segment the ROI This section presents the main
concepts of these methods in detail.

2.1. Particle Swarm Optimization

Metaheuristic techniques have been developed to solve complex optimization prob-
lems, when mathematical techniques fail or require high computational time. The process
of any metaheuristic technique starts with one or more random solutions initialized in the
search-space. Then, powerful tools, inspired by natural phenomena, are used to iteratively
converge the solution(s) to the optimal solution. The success of a metaheuristic technique
relies on its ability to explore the search-space in depth, and to exploit promising areas.

Metaheuristics are grouped into three categories, based on the type of inspired natural
phenomenon: (1) evolutionary algorithms inspired by genetic inheritance for survival, such
as genetic algorithms (GAs) [48]; (2) swarm intelligence that mimics the social behavior
of a group of animals, such as particle swarm optimization (PSO) [49]; (3) physics-based
techniques, which are based on physical rules, such as simulated annealing (SA) [50].
Among the many metaheuristics developed in the literature, PSO has proven its efficiency
in many applications [51,52].

PSO is a swarm intelligence technique proposed by Eberhart and Kennedy in 1995 [49],
inspired by the flight behavior of birds. It has been successfully used in many application
areas, due to its simplicity of implementation and effectiveness.

In PSO, many particles or candidate solutions are randomly initialized in the search-
space, and then each particle iteratively adjusts its position, according to its own and its
colleagues’ flight experience [49,53,54]. PSO’s fundamental concept is to randomly initialize
N, candidate solutions in the search-space. Their velocities and positions are then updated,
using (1) and (2):

Vi:a)XVi—l—ClXR1X(Pj—Xi)+C2XR2x(G_Xi) @

Xi=Xi+V; ()

where V; and X; are the velocity and position of particle 7, and P; and G are the individuals
and global solutions; R; and R; are two random numbers, and w, ¢1, and ¢, are the weights
of physical, cognitive, and social influences, respectively—they control the exploration and
exploitation phases in PSO.
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Each candidate solution is evaluated through a fitness function. The individual and
global best candidate solutions are updated, based on the fitness function values.
A pseudo-code for PSO is described in Algorithm 1:

Algorithm 1. PSO algorithm

1: Initialize the total number of candidate solutions Np, and the maximum number of
iterations 4y

2: Random initializaiton of candidate solutions

3: fort = 1: tyu do

4 Update the velocities V with (1)

5 Update the positions X with (2)

6: Evaluate the positions X with the fitness function

7 Update the individual (P;) and global (G) solutions
8: End for

2.2. Analysis of Variance (ANOVA)

Analysis of variance (ANOVA) is a statistical method developed by Larson in 2008 [45],
to analyze the variation of a response variable determined under different conditions,
defined by discrete factors. More precisely, the principle of ANOVA is to determine, using
a statistical test, whether the share of dispersion attributable to the factor under study is
significantly greater than the residual share. If the factorial dispersion is significantly larger
than the residual dispersion, it means that the dispersion of the data around the means
of each modality is small, compared to the dispersion of the means around the overall
mean. In this case, if the means relative to each modality are highly dispersed, while the
intra-class variability is low, it means that the means are globally different. Conversely,
if the factorial dispersion is of the same order of magnitude as the residual dispersion,
it means that the means are not different overall. Finally, the ANOVA is used to test the
equality of the means of the different groups, by comparing their variances.

The ANOVA technique has two models that we will detail: the one-way fixed-effects
ANOVA and the two-way fixed-effects ANOVA [46].

2.2.1. One-Way Fixed-Effects ANOVA

The results of a one-way ANOVA are only significant if the following three assump-
tions are met:

- Each sample comes from a normally distributed population.

- The variances of the populations from which the samples come are equal.

- The observations in each group are independent, and the observations in the groups
were obtained by random sampling. The null and alternative hypotheses defined in a
one-way ANOVA are as follows:

- Null hypothesis or Hy: the means of the k groups in the study population are equal.

- Alternative hypothesis or Hj: at least one group means differs from the others.

A statistical test—for example, Fisher’s F test, with (k — 1) [factorial part] and (N — k)
[residual part, where N is the size of the study population] degrees of freedom (provided
that the normality and homogeneity of the residuals are respected), at a given a risk
(generally 5%)—allows us to reject, or not to reject, the null hypothesis. The key elements of
the one-way ANOVA method are summarized in Table 2. The main definitions associated
with this table are defined below:

- The total sum of squares (SST) is the sum of the squared distances between each observed
value and the overall mean; it is the sum of weight attributable to the factor (SSF) and
weight attributable to the residues (SSE); it can therefore be summarized by (3).

- The factorial sum of squares (SSF), which measures the differences between the group
averages and the overall average, is defined in (4).

- Theresidual sum of squares (SSR) is defined in (5).

- pis the p-value corresponding to Fi_j n_-.
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Ultimately, let us suppose that the p-value is less than the threshold value that has
been defined (usually 5%): in that case, the null hypothesis can be rejected, implying that at
least one of the means in a population group differs from the others.

kK 1
SST=SSF+SSE=Y"Y (y;i —7)° 3)
i=1j=1

- SSF: factorial sum of squares.

- SSE: error sum of squares.

- i: index of the modalities (groups), i.e., from 1 to k.
- j: observation index in a modality.

- Yj: observations.

- ¥: overall mean of observations.

SSR = 3t 77)?
=YY (vi— %) )
i=1j=1
k 2
SSF =Y ni(yi —7) )
i=1

- n;: numbers of data for each of the modalities.
- Y;: mean of the n;-values of the considered modality.

Table 2. Key elements of one-way ANOVA calculations.

Source of Variation Sum of Squares Degrees of Freedom Mean Squares F-Value p-Value

Factor SSF (attributable to factor) k—1 kS SF
-1

SSE SSF

Residues or error SSE (attributable to residues) N —k r—1 P
N -k BNk = —o5E
N—k
Total SST = SSF + SSE N-1

2.2.2. Two-Way Fixed-Effects ANOVA

The principle of the two-way fixed effects ANOVA model is, first, to decompose the
total dispersion of the data into four sources: the contribution attributable to the first
factor, noted A; the contribution attributable to the second factor, noted B; the contribution
attributable to the interaction of the two factors; and the unexplained or residual share. In
this method, each level of a factor is combined with the other factor: the two factors are
said to be crossed. Then, in a second step, it is necessary to evaluate, with the help of a
statistical test, if the factorial shares, and the one linked to the interaction, are significantly
higher than the residual share.

Before going into the details of the method, it is necessary to define the following parameters:

- The first categorical variable studied (often called factor A) has a modalities (we
also say that the factor A contains a levels). The index of the modalities of this first
categorical variable, noted 7, goes from 1 to a. Similarly, the second categorical variable
studied (often called factor B) has b modalities. The index of the modalities of this
second categorical variable, noted i, goes from 1 to b.

- The total number of observations is always noted as N, but the number of observations
in each cell of the factorial design is noted as n;;. Equation (6) defines the relationship
between N and 1;;. In the following, 7 is the number of repetitions.
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- The observations in each cell of the factorial design (i.e., in each factorial combination)
are denoted by y;jx, where k is the replication index in each crossover. The overall
average of the responses is defined in (7), where the two points (“_”) correspond to
the indices of the first and second categorical variables.

- The means of each cross of modalities are noted ¥;; (see (8)).

- The marginal means of the modalities of the first variable and those of the second variable
are respectively noted ;. and .}, and meet the definitions of Equations (9) and (10).

- Themarginal numbers of the modalities of the first variable and those of the second variable
are respectively noted as ;. and 7.j, and meet the definitions of Equations (11) and (12).

a b
NZZZ”U (6)

i=1j=1
N R A
V.= Y)Y vk )
i=1j=1k=1
1 ¢
=) Vijk 8
Mij k=1
1
V=73 T )
j=1
. 1&_
=Ly (10)
a3
b
n;. = 2 Tll']' (11)
j=1
a
1’14]‘ = Z 1’11‘]‘ (12)

Like the one-way ANOVA method, and as shown in Table 3, the two-way ANOVA
technique first measures the total dispersion of the data by calculating the total sum of
squares (SST), as defined in (13). Then, the total dispersion is decomposed into the part
attributable to the first factor, noted SSA (see (14)), the part attributable to the second
factor, noted SSB (see (15)), the part attributable to the interaction between the two factors,
noted SSAB (see (16)), and finally, the part attributable to the residues, noted SSR (see (17)).
After calculating the variances of the factors, interaction, and residuals—which are referred
to as mean squares in Table 3—statistical hypothesis tests, i.e., F-tests of the ratio of two
variances, are performed, to assess whether each of the three variance shares is significantly
greater than the residual variance. Under the assumptions of normality and homogeneity
of residuals, the F-test statistic follows a Fisher distribution with:

- (a—1)and ab(n — 1) degrees of freedom for the tests related to factor A;

- (b—1)and ab(n — 1) degrees of freedom for the tests related to factor B;

- (a—1)(b—1)and ab(n — 1) degrees of freedom for the tests related to the interaction
between the two factors, A and B.

Finally, as in the previous section, and in a classical way, we must calculate the
probability, under the null hypothesis Hy, of observing such an F-value: this is the p-value.
This p-value is compared to the chosen level of significance (generally set at 5%). If the
p-value is lower than the significance level, we conclude that the effect is significant. If not,
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the conclusion is not that there is no effect, but that there is no evidence of an effect. It is
possible, for example, that the sample sizes are too small to show a significant difference.

a b M 2
SST = Z Z Z (y,-]-k - ]T) (13)
i=1j=1k=1
2 2
SSA=bn) (7. —7.) (14)
i=1
b 2
SSB=an) (v —7.) (15)
j=1
a b 2
SSAB=YY n(yj—7.)" —SSA—SSB (16)
i=1j=1
b 2
sSR=3" Y (i — 7)) (17)
i=1j=1

Table 3. Key elements of two-way ANOVA calculations.

Source of Variation Sum of Squares Degrees of Freedom Mean Squares F-Value p-Value
Factor A SSA (attributable to factor A) a—1 55A r _ iiﬁx Pa
a—1 A(a—1ab(n—1)) = TSSE
ab(n—1)
Factor B SSB (attributable to factor B) b—-1 SSB r _ % VB
b—1 B(b—1ab(n—1)) = T SSE
ab(n—1)
- SSAB SSAB SSAB
Interaction AB - ; - (a—1)(b-1) _ (a-D)(-1) PAB
(attributable to interaction AB) CERCESY) FAB((a=1)(b-1),ab(n—1)) = ~—c6p—
ab(n—T1)
Residues or error SSE ab(n—1) SSE F p

(attributable to residues)

ab(n—1)

2.3. K-Means Clustering Technique

K-means is an unsupervised clustering technique that separates all data into K clusters.
Each data point is assigned to one of the K clusters that minimize the Euclidean distance
between the data point and the cluster’s center. The centers are then updated, and the
data points are reassigned to the closest center throughout several iterations. The iterations
are repeated, until the centers do not move or the data points do not change the cluster to
which they are assigned [55,56]. Algorithm 2 describes the K-means clustering technique.

Algorithm 2. K-means Algorithm

1: Initialize the number of clusters

2: Choose initial cluster centers

3: While The stopping criterion is not satisfied, do
4: Assign each data point to one cluster

5: Update the center of each cluster

6: End while

3. Proposed Segmentation Method

The proposed segmentation method consists of three main stages. In the first stage, a
pre-processing of the image is performed, to eliminate any unnecessary data. Then, PSO
is applied, to identify the ROI, and K-means is used, to segment the ROI. An illustrative
diagram is shown in Figure 7, and a simple flowchart of the proposed method is presented
in Figure 8 where the detection and localization of the tumor is marked by the red square.
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Patient MRI image
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‘ Pre-processing of the image ‘
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means
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‘ End ‘

Figure 7. Diagram of the proposed approach.

ROI detection using Tumor segmentation

with K-means

stripping PSO and ANOVA

Skull stripped Detected ROI Brain tumor
image segmented image

Figure 8. Flowchart of the proposed segmentation method.

3.1. Image Pre-Processing

Image pre-processing is vital for removing noisy, inconsistent, incomplete, and irrele-
vant data [57]. Several approaches can improve the image quality during its transmission
or storage [58]. We will mention, for example, those based on the concept of compressed
sensing, where the image enhancement is carried out during acquisition [59-63]. An alter-
native approach is to perform simple and efficient de-noising (close to optimality) from
first or second generation wavelets [64-66].

Skull-stripping is a crucial step in eliminating from the brain image all non-brain
tissue, such as skull bone, fat, skin, etc. [67]. To this end, several approaches have been
developed [68,69]. The first step of the proposed technique is a skull-stripping procedure,
in which the gray-scale image is converted into a binary image, using a fixed threshold.
Then, two morphological operations—filling and erosion—are applied to the binary image.
Finally, the original image is masked by the obtained binary image; the generated image is
the skull-stripped image (see Figure 9) [60,70-72].

(b)

Figure 9. Pre-processing step: (a) original brain image; (b) brain image after pre-processing.
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3.2. ROI Detection

PSO is a powerful metaheuristic technique, designed to solve complex optimization
problems. The proposed algorithm uses PSO to search for the optimal block containing the
tumor within the MRI image. The principal concept of this stage is described as follows.

Firstly, several candidate blocks are randomly initialized within the MRI image, and
each candidate block is evaluated with a fitness function, to determine the best blocks (see
Figure 10). The proposed algorithm’s fitness function is based on the two-way ANOVA, to
analyze variance. The used data are the candidate block and the MRI image of a no-disease
brain. The used fitness function is given by (18).

MSA = MSB
MSE = MSE

fitness = (18)

Figure 10. ROl identification, using PSO and ANOVA: (a) candidate blocks (in red) after 5 iterations;
(b) candidate blocks after 15 iterations; (c) candidate blocks after 35 iterations; (d) candidate blocks
after 50 iterations.

As MSA and MSB represent the variability among group means, and MSE represents
the variability within the group, divided by the degree of freedom, then the high values of
MSA and MSB correspond to significant variability between the candidate block and the
no-disease brain image, which means that there is an abnormal tissue in this block. In other
words, the large variability between the candidate block and the no-disease brain image
signifies that this candidate block contains a tumor. Therefore, the candidate block that
corresponds to the fitness function’s maximum value is considered the best block found.
Once the fitness function evaluation and the global and individual best blocks have been
updated, the positions of the candidate blocks are also updated, using (1) and (2). The
fitness function evaluation and updating block processes are repeated, until maximum
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iterations are reached. As some solutions can be evaluated more than once in a metaheuris-
tic technique, the fitness function value and the positions of each candidate solution are
stored in a matrix, to reduce the computational time. Then, if the PSO algorithm attempts
to evaluate an already-evaluated solution, its fitness value is taken directly from the matrix.
This idea has decreased the computational complexity of block-matching problems [69].

3.3. Tumor Segmentation

For tumor segmentation, the K-means clustering technique is applied to the global
best block, found in the ROI detection stage, containing the tumor. Because we classify the
blocks as tumor or non-tumor, the K-means method uses two clusters. Figure 11 illustrates
the identified ROI and its segmentation using K-means.

(b)
Figure 11. ROI segmentation using K-means: (a) identified ROI; (b) ROI segmented with K-means.

The segmentation results are then evaluated, by measuring the similarity or dissimi-
larity between them and the Ground Truth. Figure 12 illustrates the segmentation result of
our approach and the Ground Truth.

(a) (b)

Figure 12. Performance comparison between the proposed brain tumor segmentation and Ground
Truth: (a) segmentation using our method; (b) Ground Truth.

Over the years, several similarity and dissimilarity metrics have been formulated and
reported in the literature. To evaluate our algorithm, we used the following metrics [73]:



Cancers 2022, 14, 4399

16 of 32

1. Dice similarity coefficient:

2TP
2TP + FP+ FN (19)
2. Jaccard distance:
TP
_— 2
TP+ FP+FN (20)

3.  Correlation coefficient:

1 M N ISI‘,]'—IS Igi,j_lg
MXNZZ( O7s )( Org ) 1)

4.  Root Mean Squared Error (RMSE):

M N
MxNZZ Is; j Igz] (22)
i=1j=1
where FP was the number of false positives, TP was the number of true positives, FN was
the number of false negatives, Is referred to the segmented image with our technique, Ig
was the Ground Truth image, and M and N represented the image’s size.

As the Dice coefficient and Jaccard distance are two metrics of similarity, a powerful
method should maximize these criteria. The correlation criterion is also a similarity metric,
and varies between —1 and +1; the perfect positive correlation is achieved when the
coefficient equals +1. RMSE is, on the other hand, a dissimilarity metric; the minimum
value of RMSE is indicative of a robust segmentation technique [74].

4. Experimental Analysis

The proposed brain tumor segmentation approach was evaluated using the private
CIKA [75] and the challenging BraTS 2015 [16] databases. This section presents the specifi-
cations of each employed database. Furthermore, we analyze the results obtained from our
proposed approach, and compare the results with other classical approaches.

4.1. Experiments on the KICA Database
4.1.1. Database Description

The proposed algorithm was implemented for the evaluation study on different MRI
images and Ground Truths obtained from a database provided by the Kouba imaging
center—Algiers (KICA) [75]—which included the brain tumor images and the correspond-
ing Ground Truth images (complete tumor areas). In total, 223 people contributed to the
constitution of the database (120 Train/103 Test). The disease-free brain images used were
in Digital Imaging and Communications in Medicine (DICOM) format, and were selected
in the same sections as the brain tumor images. We selected several MRI images, to per-
form our different experiments. The presented work was a collaboration between several
institutions from Algeria and France. The Ground Truth MRI models were defined with
the help of radiologists, neurologists, and biomedical engineers from the Kouba imaging
center in Algiers (Algeria) and the Hospital of Tours (France).

4.1.2. Experiments

This section is divided into two parts. The first part illustrates the essential role of
ANOVA in our algorithm. The ANOVA-based fitness function results were compared to
those obtained with the SAD fitness function. Following the same concept of variability
explained above, the candidate block that gave the maximum SAD value was considered
the tumor block. In the second part of this work, we compared the experimental results of
our algorithm with several well-known segmentation techniques, such as fuzzy C-means
(FCM), K-means, Otsu thresholding, local thresholding, and watershed segmentation.
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A. Experiment #1

The robustness of any technique based on metaheuristics depends on the fitness
function used: the latter is a decisive parameter in evaluating all the candidate solutions
and determining the optimal global solution. In our segmentation technique, the fitness
function measured the variability or the difference between the candidate blocks in the
brain tumor image and the corresponding blocks in the no-disease image; a significant
difference between them indicated the existence of a tumor. We resorted to the statistical
method ANOVA, using the fitness function expressed in (18). As the difference could also
be measured with any dissimilarity criterion, we changed the used fitness function of (18),
and replaced it with the SAD criterion, in order to prove the efficiency of our ANOVA-
based fitness function. The SAD metric, also called the L1 norm or Manhattan norm, is a
dissimilarity criterion, used to compare the intensities of two blocks or images [74], and is
defined as follows:

M N
SAD=Y ) |h, — L] (23)
i=1j=1

where [; and I, represent the candidate blocks in the brain tumor image and the no-
disease image.

A high SAD value showed a substantial difference between the candidate block and
the no-disease image, indicating the presence of a tumor. Therefore, the candidate block
that gave the maximum SAD value was considered the tumor block. Figure 13 shows the
original images before and after the pre-processing and segmentation procedures, where
the used fitness function was based on ANOVA and the SAD criterion.

Figure 13. Cont.
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Image 9
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(b) (c) (d)

Figure 13. The efficiency of brain tumor segmentation on the KICA dataset: comparison of ANOVA
and SAD-based methods. (a) Original images. (b) Pre-processing. (¢) Our method with ANOVA.
(d) Our method with SAD.

Table 4 shows the Dice, Jaccard distance, correlation, and the RMSE values obtained
with the two fitness functions tested by our segmentation method. From Figure 13, we
can observe that using SAD as a fitness function gave non-relevant segmentation results in
several cases; however, the segmentation results with ANOVA were near the Ground Truths
with most of the tested images. In addition, we can observe from Table 4 that the results
of segmentation with ANOVA were higher, and near to 100% in most of the tested cases
using the Dice similarity coefficient, Jaccard distance, and correlation coefficient, and near
to 0% with the RMSE metric. In contrast, SAD gave some promising results, but the majority
were not satisfactory. As a recapitulation, it is clear that using ANOVA as a fitness function
yielded much better results than those obtained with the SAD fitness function, demonstrating
the robustness and effectiveness of the technique in evaluating candidate blocks.

Table 4. The results of our segmentation method on the KICA dataset, using the Dice similarity
coefficient, Jaccard distance, correlation coefficient, and RMSE metric with two fitness functions:
ANOVA and SAD.

Images

Dice Similarity Coefficient (%) Jaccard Distance (%) Correlation Coefficient (—1 to +1) RMSE Metric (%)

ANOVA

SAD ANOVA SAD ANOVA SAD ANOVA SAD

Image 1

62.008%

NRS 44.936% NRS 0.673064 0.475478 0.0006647 0.0010605

Image 2

78.997%

NRS 65.285% NRS 0.790116 0.386167 0.0000158 0.0014934

Image 3

73.276%

24.432% 57.823% 13.916% 0.761069 0.532032 0.0003579 0.0005049

Image 4

83.265%

78.242% 71.329% 64.26% 0.870553 0.820469 0.0000657 0.0001091

Image 5

88.252%

87.581% 78.974% 77.907% 0.897922 0.888510 0.0000398 0.0000464

Image 6

87.844%

85.748% 78.323% 75.051% 0.891440 0.865518 0.0000243 0.0000361

Image 7

91.919%

88.809% 85.046% 79.871% 0.925806 0.903027 0.0000686 0.0001325

Image 8

94.535%

93.593% 89.637% 87.959% 0.952524 0.942536 0.0001223 0.0002402

Image 9

96.211%

90.469% 92.699% 82.598% 0.953663 0.66343 0.0000498 0.0004337

Image 10

95.154%

NRS 90.756% NRS 0.950669 0.94286 0.0000414 0.0133088

NRS signifies « non-relevant segmentation ».
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B.  Experiment #2

We assessed our algorithm’s effectiveness against several well-known segmentation
techniques in the second experiment. The segmented images obtained with our method,
and other segmentation methods, are shown in Figure 14. In addition, Tables 5-8 highlight
the statistical results and comparisons of our method and other related methods, using the
following metrics: Dice similarity coefficient; Jaccard distance; correlation coefficient; and
RMSE metric.

Table 5. Comparison between the results of our segmentation method on the KICA dataset and some
well-known segmentation techniques using the Dice similarity coefficient.

Images Our Method FCM K-Means Otsu Thresholding Local Thresholding Watershed Thresholding
Image 1 62.008% 2.9106% 6.858% 0.044% 0.303% NRS
Image 2 78.997% NRS NRS NRS NRS NRS
Image 3 73.276% 1.127% 6.690% NRS NRS NRS
Image 4 83.265% 25.948% 24.823% 5.750% 0.906% 8.297%
Image 5 88.252% 38.213% 38.137% 6.130% 20.762% 7.738%
Image 6 87.844% 42.716% 35.910% 4.683% 4.088% 5.357%
Image 7 91.919% 44.635% 40.291% 10.921% 35.751% 13.968%
Image 8 94.535% 50.052% 79.763% 25.940% 11.712% 27.638%
Image 9 96.211% 1.476% 56.53% 25.038% 23.014% 25.643%
Image 10 95.154% 0.810% 48.957% 18.878% NRS 28.530%
NRS signifies « non-relevant segmentation ».
Table 6. Comparison between the results of our segmentation method on the KICA dataset and some
well-known segmentation techniques using the Jaccard distance.
Images Our Method FCM K-Means Otsu Thresholding Local Thresholding Watershed Thresholding
Image 1 44.936% 1.4768% 3.551% 0.022% 0.151% NRS
Image 2 65.285% NRS NRS NRS NRS NRS
Image 3 57.823% 0.566% 3.461% NRS NRS NRS
Image 4 71.329% 14.908% 14.17% 2.96% 0.455% 4.328%
Image 5 78.974% 23.619% 23.561% 3.161% 11.583% 4.025%
Image 6 78.323% 27.159% 21.885% 2.398% 2.087% 2.752%
Image 7 85.046% 28.729% 25.228% 5.776% 21.766% 7.508%
Image 8 89.637% 33.38% 66.339% 14.903% 6.220% 16.035%
Image 9 92.699% 0.7438% 39.402% 14.310% 13.003% 14.707%
Image 10 90.756% 0.406% 32.413% 10.423% NRS 16.639%
NRS signifies « non-relevant segmentation ».
Table 7. Comparison between the results of our segmentation method on the KICA dataset and some
well-known segmentation techniques using the correlation coefficient.
Images Our Method FCM K-Means Otsu Thresholding Local Thresholding Watershed Thresholding
Image 1 0.673064 0.157563 0.293867 0.275414 0.196262 0.214095
Image 2 0.790116 0.239039 0.250315 0.219895 0.138782 0.160484
Image 3 0.761069 0.182389 0.253495 0.243609 0.129738 0.243366
Image 4 0.870553 0.289513 0.417104 0.159479 0.175391 0.192943
Image 5 0.897922 0.378542 0.561895 0.164128 0.249723 0.177235
Image 6 0.891440 0.502674 0.557390 0.135842 0.154660 0.142385
Image 7 0.925806 0.537026 0.560681 0.224682 0.356487 0.281344
Image 8 0.952524 0.474860 0.822597 0.328776 0.188492 0.3892
Image 9 0.966158 0.255578 0.593773 0.333411 0.236488 0.3951
Image 10 0.953663 0.300080 0.602117 0.271452 0.084133 0.3824
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Figure 14. The efficiency of brain tumor segmentation on the KICA dataset: comparison between the proposed ANOVA-based method and other well-known methods.
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Table 8. Comparison between the results of our segmentation method on the KICA dataset and some
well-known segmentation techniques using the RMSE metric.

Images Our Method FCM K-Means Otsu Thresholding Local Thresholding Watershed Thresholding
Image 1 0.0006647 0.0012972 0.0021345 0.0057836 0.0020789 0.0031144
Image 2 0.0000158 0.0000920 0.0005815 0.0040139 0.0001327 0.0011636
Image 3 0.0003579 0.0008458 0.0046264 0.0242370 0.0024103 0.0155236
Image 4 0.0000657 0.0005798 0.0013554 0.0915980 0.0010545 0.0589136
Image 5 0.0000399 0.0005223 0.0006572 0.0973590 0.0006525 0.0915326
Image 6 0.0000243 0.0002296 0.0003564 0.1246628 0.0005443 0.1213210
Image 7 0.0000686 0.0007301 0.0018533 0.0672948 0.0017184 0.0423277
Image 8 0.0001223 0.0049038 0.0004566 0.0636407 0.0068672 0.0722

Image 9 0.0000498 0.0073548 0.0018346 0.1033327 0.0065827 0.0887

Image 10 0.0000414 0.0060980 0.0040885 0.1220065 0.0062485 0.0533

It can be observed, from the qualitative and quantitative comparisons, that the pro-
posed method can segment the brain tumor very efficiently, in contrast to the classical
methods, where their segmentations are not relevant or not satisfactory in the majority of
cases. The power of our method resides primarily in the following point: the first stage of
our algorithm, that determines the ROI, then segments only this region, making the brain
tumor segmentation results free of any irrelevant information, such as skull bone. Unlike
other segmentation techniques, such as those based on Otsu or local thresholding, some
extraneous information remains on the segmented image.

To complement the above results, Figure 15 further highlights the robustness and
effectiveness of our proposed method. As shown in Figure 15a-d, the results of our
algorithm (blue bars in each figure) are highest in Dice, Jaccard, and correlation, and
lowest in RMSE, compared to other competing techniques, which proves the efficiency and
robustness of our method. Thus, all the experimental results demonstrate that the proposed
method outperforms all other competing methods.

4.2. Experiments on the BraTS 2015 Database
To ensure that our previous findings could be generalized, we used an external and very
challenging dataset to test the performance of the PSO-ANOVA-based segmentation approach.
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Figure 15. Comparison of segmentation results on the CIKA dataset based on: (a) Dice similarity
coefficient; (b) Jaccard Distance; (c) correlation coefficient; (d) RMSE metric.

4.2.1. Database Description

The Medical Image Computing and Computer Assisted Intervention (MICCAI) confer-
ence provided the BraTS database [16]; it is the official database for the conference’s brain
tumor MRI segmentation challenge, and it is also commonly used by researchers working
on brain tumor MRI segmentation. The BraTS database has been updated annually since
the challenge was launched in 2012.

The dataset for segmenting brain tumor images was called BraTS 2015. It consisted of
54 low-grade gliomas (LGG) and 220 high-grade gliomas (HGG) MRIs. These 274 images
were reserved for the training set, while 110 were for the testing set. The total size of all the
MRI images was 240 x 240 x 155. The four MRI modalities were T1, T1lc, T2, and T2-FLAIR.
Four intra-tumoral classes—edema, enhancing tumor, non-enhancing tumor, and necrosis—
were provided as segmented ‘Ground Truth’. The Dice similarity coefficient was used
in this experiment to evaluate and compare the segmentation results with some recently
published state-of-the-art methods. The three modalities of tumor regions—complete, core,
and enhancing tumors—were considered, in computing the performance measure. The
complete (or whole) tumor area comprised enhancing and non-enhancing cores, edema,
and necroses. Necroses and enhancing and non-enhancing cores were all in the core
region. Only the area of the enhancing region was referred to as the enhancing tumor.
Figure 16 highlights the three modalities of tumor regions. The Dice score was determined
by superimposing the anticipated output image over the manually segmented label (i.e.,
Ground Truth).

4.2.2. Experiments

As we did with the KICA dataset, we conducted visual and quantitative experiments
on the BraTS 2015 dataset, to assess the performance of our proposed brain tumor seg-
mentation approach. A subset of four T2-FLAIR images, representing the most clinically
encountered tumors, was chosen, to highlight the visual assessment; Figure 17 shows
the results of our proposed brain tumor segmentation approach, using HGG and LGG
MRI images. According to the WHO, grades I and II are considered low-grade glioma
(LGG), while grades III and IV are highly malignant, and are called high-grade glioma
(HGG). We note that the type of segmentation considered in this demonstration is based
on complete tumors, which include necrosis, edema, and enhancing and non-enhancing
cores. Furthermore, Table 9 presents our approach’s performance, using the Dice similarity
coefficient as a statistical criterion, and compares our results against the results of recently
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published approaches related to the BraTS 2015 challenging dataset. To make a comparison
against the state-of-the-art, we have reported in Table 9 the segmentation results of the
three modalities of tumor regions (i.e., complete, core, and enhancing tumors).

Necrotic and
Non-Enhancing

Tumor . + + .

Whole Tumor

Enhancing . +
Tumor Tumor Core

Edema

Figure 17. The efficiency of our proposed brain tumor segmentation method on the BraTS 2015
dataset: (top row) original T2-FLAIR images; (bottom row) segmentation results of complete tumors.

Table 9. The results of our segmentation method on the BraTS 2015 dataset, using the Dice similarity
coefficient applied on complete, core, and enhancing tumors, and comparison to the state-of-the-art.

Dice
Authors Year Methods ;
Complete Core Enhancing
Havaei et al. [76] 2016 CNN (Two-Phase Patch-Wise Training Procedure) 88% 79% 73%
Pereira et al. [77] 2016 CNN 87% 73% 68%
Tseng et al. [78] 2017 CNN (Encoder-Decoder Architecture) 85% 68% 68%
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Table 9. Cont.

Dice

Authors Year Methods Complete Core Enhancing
Hussain et al. [39] 2018 ILinear 86% 87% 90%
Igbal et al. [79] 2018 CNN (Sequential Multiple Neural Network Layers) 87% 86% 79%
Liu et al. [80] 2018 CNN (ResNet-50) 87% 62% 68%
Hu and Deng [81] 2019 MCCNN + CRFs 87% 76% 75%
Li et al. [82] 2019 CNN (Modified U-Net Architecture) 89% 73% 73%
Elmezain et al. [83] 2022 CapsNet + LDCRF + Post-processing 91% 86% 85%
Atia et al. 2022 Our Method 91% 87% 86%

From the visual and statistical evaluations, we can observe that our approach gave
relevant segmentation results in most tested cases, and that the segmentation results were
near the Ground Truth images. Besides, we can observe from Table 9 that the segmentation
results were higher (mean ~87%) with the three modalities of tumor regions using the Dice
similarity coefficient. According to the complete regions, our approach outperformed all
compared state-of-the-art approaches, like CNN [76-78] and ILinear [39], while producing
equivalent and competitive outcomes to the core and enhancing tumor areas. Finally, as
the findings obtained were similar to the results obtained with the CIKA dataset, we can
deduce that our approach is a robust and effective technique.

As the majority of the PSO-ANOVA results were highly compatible with private and
public datasets, we can deduce that the performance of our brain tumor segmentation
approach is satisfactory, and we are confident that it can be implemented in real-world
applications, to help doctors in making clinical decisions.

5. Conclusions

In this paper, a new method for brain tumor segmentation has been proposed. This
method consists of four steps:

- The skull bone is precisely removed from the image, to exclude irrelevant data.

- The particle swarm optimization (PSO) technique is then applied, to detect the region
of interest (ROI) that contains the brain lesion.

- The fitness function used to evaluate the candidate blocks is based on a two-way
fixed-effects analysis of variance (ANOVA).

- Finally, in the last step of the method, the K-means segmentation method is used in
the lesion block, to classify it into two possible categories: tumor and non-tumor.

An evaluation study was performed using extensive magnetic resonance imaging
(MRI) databases; a visual assessment and four statistical measures were used to evaluate
the performance of the tumor segmentation. The images representing the most clinically
encountered positions were used for the visual assessment. The results show that com-
peting approaches do not provide usable segmentation results in some cases, whereas
our approach is a promising solution for clinical decision support. Indeed, statistically,
the results show that the proposed method gives a tumor segmentation accuracy of 96%,
outperforming other state-of-the-art methods. Moreover, comparing our method with the
manual and careful segmentation performed by experts to obtain what is called ‘Ground
Truth” does not show significant differences. Indeed, the difference is about 1%.

The different results, and the comparison with state-of-the-art methods, show that
our approach can be a useful tool for brain cancer detection, diagnosis, and radiotherapy
treatment planning. The future direction of our research in brain tumor segmentation must
address the limitations of the unsupervised approach by: (1) combining PSO, ANOVA, and
a CNN model [84-90]; (2) using generative adversarial networks [91-94] to pre-process,
colorize, correct, and enhance images before presenting them to the segmentation algorithm.
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GA Genetic Algorithm
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LGG Low-Grade Gliomas (LGG)

KICA Kouba Imaging Center—Algiers
MRI Magnetic Resonance Imaging
RMSE Root Mean Squared Error

PSO Particle Swarm Optimization
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SVM Support Vector Machines

SA Simulated Annealing

SAD Sum-of-Absolute-Differences

SSE Error Sum of Squares

SSF Factorial Sum of Squares

SSR Residual Sum of Squares

SST Total Sum of Squares

T1 T1-Weighted Imaging Sequence

T2 T2-Weighted Imaging Sequences
Tlc T1-Weighted Contrast-Enhanced
TE Echo Time

TR Repetition Time

P True Positives

WHO World Health Organization
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