Skip to Main content Skip to Navigation
Journal articles

Particle Swarm Optimization and Two-Way Fixed-Effects Analysis of Variance for Efficient Brain Tumor Segmentation

Abstract : Segmentation of brain tumor images, to refine the detection and understanding of abnormal masses in the brain, is an important research topic in medical imaging. This paper proposes a new segmentation method, consisting of three main steps, to detect brain lesions using magnetic resonance imaging (MRI). In the first step, the parts of the image delineating the skull bone are removed, to exclude insignificant data. In the second step, which is the main contribution of this study, the particle swarm optimization (PSO) technique is applied, to detect the block that contains the brain lesions. The fitness function, used to determine the best block among all candidate blocks, is based on a two-way fixed-effects analysis of variance (ANOVA). In the last step of the algorithm, the K-means segmentation method is used in the lesion block, to classify it as a tumor or not. A thorough evaluation of the proposed algorithm was performed, using: (1) a private MRI database provided by the Kouba imaging center—Algiers (KICA); (2) the multimodal brain tumor segmentation challenge (BraTS) 2015 database. Estimates of the selected fitness function were first compared to those based on the sum-of-absolute-differences (SAD) dissimilarity criterion, to demonstrate the efficiency and robustness of the ANOVA. The performance of the optimized brain tumor segmentation algorithm was then compared to the results of several state-of-the-art techniques. The results obtained, by using the Dice coefficient, Jaccard distance, correlation coefficient, and root mean square error (RMSE) measurements, demonstrated the superiority of the proposed optimized segmentation algorithm over equivalent techniques
Complete list of metadata

https://hal-univ-tours.archives-ouvertes.fr/hal-03777143
Contributor : Sebastien Jacques Connect in order to contact the contributor
Submitted on : Wednesday, September 14, 2022 - 1:37:06 PM
Last modification on : Thursday, September 15, 2022 - 10:29:10 AM

File

cancers-14-04399-v2.pdf
Publisher files allowed on an open archive

Identifiers

Collections

Citation

Naoual Atia, Amir Benzaoui, Sebastien Jacques, Madina Hamiane, Kaouther El Kourd, et al.. Particle Swarm Optimization and Two-Way Fixed-Effects Analysis of Variance for Efficient Brain Tumor Segmentation. Cancers, MDPI, 2022, 14 (18), pp.4399. ⟨10.3390/cancers14184399⟩. ⟨hal-03777143⟩

Share

Metrics

Record views

0

Files downloads

0