Skip to Main content Skip to Navigation
Journal articles

Thermopower scaling in conducting polymers

Abstract : By directly converting heat into electricity, thermoelectric effects provide a unique physical process from heat waste to energy harvesting. Requiring the highest possible power factor defined as α 2 σ, with the thermopower α and the electrical conductivity σ, such a technology necessitates the best knowledge of transport phenomena in order to be able to control and optimize both α and σ. While conducting polymers have already demonstrated their great potentiality with enhanced thermoelectric performance, the full understanding of the transport mechanisms in these compounds is still lacking. Here we show that the thermoelectric properties of one of the most promising conducting polymer, the poly(3,4-ethylenedioxythiophene) doped with tosylate ions (PEDOT-Tos), follows actually a very generic behavior with a scaling relation as α ∝ σ −1/4. Whereas conventional transport theories have failed to explain such an exponent, we demonstrate that it is in fact a characteristic of massless pseudorelativistic quasiparticles, namely Dirac fermions, scattered by unscreened ionized impurities.
Document type :
Journal articles
Complete list of metadata
Contributor : Patrice Limelette Connect in order to contact the contributor
Submitted on : Thursday, April 8, 2021 - 8:40:00 AM
Last modification on : Wednesday, May 18, 2022 - 9:33:09 AM


limelette-2020-Sci Rep 10-8086...
Publisher files allowed on an open archive



Morgan Lepinoy, Patrice Limelette, Bruno Schmaltz, François Tran Van. Thermopower scaling in conducting polymers. Scientific Reports, Nature Publishing Group, 2020, 10, ⟨10.1038/s41598-020-64951-z⟩. ⟨hal-03192470⟩



Record views


Files downloads