Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study - Université de Tours Accéder directement au contenu
Article Dans Une Revue Analytical Chemistry Année : 2020

Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study

Shuxia Guo (1, 2) , Claudia Beleites (2) , Ute Neugebauer (1, 2) , Sara Abalde-Cela (3) , Nils Kristian Afseth (4) , Fatima Alsamad (5) , Suresh Anand (6) , Cuauhtemoc Araujo-Andrade (7) , Sonja Aškrabić (8) , Ertug Avci (9) , Monica Baia (10) , Malgorzata Baranska (11) , Enrico Baria (12, 13) , Luis Batista de Carvalho (14) , Philippe de Bettignies (15) , Alois Bonifacio (16) , Franck Bonnier (17) , Eva Maria Brauchle (18) , Hugh Byrne (19) , Igor Chourpa (17) , Riccardo Cicchi (6, 20) , Frédéric Cuisinier (21, 22) , Mustafa Culha (9) , Marcel Dahms (1, 2) , Catalina David (15) , Ludovic Duponchel (23) , Shiyamala Duraipandian (19) , Samir El-Mashtoly (24) , David Ellis (25) , Gauthier Eppe (26) , Guillaume Falgayrac (27) , Ozren Gamulin (28) , Benjamin Gardner (29) , Peter Gardner (25) , Klaus Gerwert (30) , Evangelos Giamarellos-Bourboulis (31) , Sveinbjorn Gizurarson (32) , Marcin Gnyba (33) , Royston Goodacre (34) , Patrick Grysan (35) , Orlando Guntinas-Lichius (36) , Helga Helgadottir (32) , Vlasta Mohaček Grošev (37) , Catherine Kendall (38) , Roman Kiselev (2) , Micha Kölbach (39) , Christoph Krafft (2) , Sivashankar Krishnamoorthy (35) , Patrick Kubryck (39) , Bernhard Lendl (40) , Pablo Loza-Alvarez (7) , Fiona Lyng (19) , Susanne Machill (41) , Cedric Malherbe (26) , Monica Marro (7) , Maria Paula M. Marques (42) , Ewelina Matuszyk (43) , Carlo Francesco Morasso (44) , Myriam Moreau (23) , Howbeer Muhamadali (34) , Valentina Mussi (45) , Ioan Notingher (46) , Marta Pacia (43) , Francesco Pavone (12, 20) , Guillaume Penel (27) , Dennis Petersen (47) , Olivier Piot (5) , Julietta Rau (48) , Marc Richter (39) , Maria Krystyna Rybarczyk (49) , Hamideh Salehi (21) , Katja Schenke-Layland (18) , Sebastian Schlücker (50) , Markus Schosserer (51) , Karin Schütze (52) , Valter Sergo (53) , Faris Sinjab (46) , Janusz Smulko (33) , Ganesh Sockalingum (5) , Clara Stiebing (2) , Nick Stone (54) , Valérie Untereiner (5) , Renzo Vanna (44) , Karin Wieland (55) , Jürgen Popp (1, 2) , Thomas Bocklitz (1, 2)
1 Institute of Physical Chemistry, Abbe Center of Photonics
2 Leibniz Health Technologies, Leibniz Institute of Photonic Technology, Jena
3 INL - International Iberian Nanotechnology Laboratory
4 NOFIMA - Norwegian Institute of Food,Fisheries and Aquaculture Research
5 URCA - Université de Reims Champagne-Ardenne
6 National Institute of Optics (CNR-INO), National Research Council - Florence, Italy
7 ICFO - Institut de Ciencies Fotoniques [Castelldefels]
8 Institute of Physics [Belgrade]
9 Department of Genetics and Bioengineering
10 Faculty of Physics [Cluj-Napoca]
11 Faculty of Chemistry [Krakow]
12 Department of Physics [Florence]
13 European Laboratory for Nonlinear Spectroscopy
14 Department of Chemistry, University of Coimbra
15 HORIBA France SAS [Villeneuve d'Ascq]
16 Università degli studi di Trieste = University of Trieste
17 NMNS - Nanomédicaments et Nanosondes
18 NMI - Natural and Medical Sciences Institute [Reutlingen]
19 Focas Research Institute [Dublin]
20 LENS - European Laboratory for Non-Linear Spectroscopy
21 LBN - Laboratoire de Bioingénierie et NanoSciences
22 CHRU Montpellier - Centre Hospitalier Régional Universitaire [Montpellier]
23 LASIRE - Laboratoire Avancé de Spectroscopie pour les Intéractions la Réactivité et l'Environnement - UMR 8516
24 ProDi - Center for Protein Diagnostics [Bochum]
25 Manchester Institute of Biotechnology
26 MolSys Research Unit [Liège]
27 MABLab (ex-pmoi) - Marrow Adiposity & Bone Lab - Adiposité Médullaire et Os - ULR 4490
28 Department of Physics and Biophysics, School of Medicine [Zagreb]
29 School of Physics and Astronomy [Exeter]
30 ProDi - Center for Protein Diagnostics [Bochum]
31 University of Athens Medical School [Athens]
32 Faculty of Pharmaceutical Sciences [Reykjavik]
33 ETI - Faculty of Electronics, Telecommunications and Informatics [GUT Gdańsk]
34 Department of Biochemistry and Systems Biology [Liverpool]
35 LIST - Luxembourg Institute of Science and Technology
36 Jena University Hospital [Jena]
37 Center for Advanced Materials Science [Zagreb]
38 Biophotonics Research Unit [Gloucester]
39 Renishaw plc
40 Institute of Chemical Technologies and Analytics
41 Bioanalytical Chemistry [Dresden]
42 Department of Life Sciences and Coimbra Chemistry Center, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.
43 JCET - Jagiellonian Centre for Experimental Therapeutics
44 IRCCS Pavia - ICS Maugeri - Istituti Clinici Scientifici Maugeri [Pavia]
45 Institute for Microelectronics and Microsystems [Naples]
46 School of Physics and Astronomy [Nottingham]
47 Department of Biophysics, Faculty of Biology and Biotechnology [Bochum]
48 CNR-ISM - Istituto di Struttura della Materia
49 Chemical Faculty [Gdańsk]
50 Faculty of Chemistry, University of Duisburg-Essen
51 Department of Biotechnology, Institute of Molecular Biotechnology [Vienna]
52 CellTool GmbH [Tutzing]
53 Dept. of Engineering and Architecture
54 College of Engineering, Exeter
55 Institute of Chemical Technologies and Analytics
Franck Bonnier
Hugh Byrne
Igor Chourpa
Micha Kölbach
  • Fonction : Auteur
Patrick Kubryck
  • Fonction : Auteur
Olivier Piot
Marc Richter
  • Fonction : Auteur
Ganesh Sockalingum
  • Fonction : Auteur
  • PersonId : 1113841
Valérie Untereiner

Résumé

The variable configuration of Raman spectroscopic platforms is one of the major obstacles in establishing Raman spectroscopy as a valuable physicochemical method within real-world scenarios such as clinical diagnostics. For such real world applications like diagnostic classification, the models should ideally be usable to predict data from different setups. Whether it is done by training a rugged model with data from many setups or by a primary-replica strategy where models are developed on a ‘primary’ setup and the test data are generated on ‘replicate’ setups, this is only possible if the Raman spectra from different setups are consistent, reproducible, and comparable. However, Raman spectra can be highly sensitive to the measurement conditions, and they change from setup to setup even if the same samples are measured. Although increasingly recognized as an issue, the dependence of the Raman spectra on the instrumental configuration is far from being fully understood and great effort is needed to address the resulting spectral variations and to correct for them. To make the severity of the situation clear, we present a round robin experiment investigating the comparability of 35 Raman spectroscopic devices with different configurations in 15 institutes within seven European countries from the COST (European Cooperation in Science and Technology) action Raman4clinics. The experiment was developed in a fashion that allows various instrumental configurations ranging from highly confocal setups to fibre-optic based systems with different excitation wavelengths. We illustrate the spectral variations caused by the instrumental configurations from the perspectives of peak shifts, intensity variations, peak widths, and noise levels. We conclude this contribution with recommendations that may help to improve the inter-laboratory studies.
Fichier principal
Vignette du fichier
Comparability of Raman Spectroscopic Configurations: A LargeScale.pdf (3.29 Mo) Télécharger le fichier
Origine : Publication financée par une institution

Dates et versions

hal-03026777 , version 1 (01-02-2024)

Identifiants

Citer

Shuxia Guo, Claudia Beleites, Ute Neugebauer, Sara Abalde-Cela, Nils Kristian Afseth, et al.. Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study. Analytical Chemistry, 2020, 92 (24), pp.15745-15756. ⟨10.1021/acs.analchem.0c02696⟩. ⟨hal-03026777⟩
245 Consultations
6 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More