H. Maes, A. Kuchnio, A. Peric, S. Moens, K. Nys et al., , p.662

J. Georgiadou, S. Wouters, H. Vinckier, M. Vankelecom, A. C. Garmyn et al.,

H. Boulanger, E. Gerhardt, M. Dejana, B. Dewerchin, W. Ghesquiere et al., Tumor vessel normalization by chloroquine independent of autophagy. 665 Cancer Cell, vol.26, p.55, 2014.

P. Maycotte, S. Aryal, C. T. Cummings, J. Thorburn, M. J. Morgan et al., , p.667

, Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy

, Autophagy, vol.8, issue.2, p.56, 2012.

M. Mauthe, I. Orhon, C. Rocchi, X. Zhou, M. Luhr et al.,

F. Mari and . Reggiori, Chloroquine inhibits autophagic flux by decreasing autophagosome-671 lysosome fusion, Autophagy, vol.14, issue.8, p.57, 2018.

P. Pellegrini, A. Strambi, C. Zipoli, M. Hagg-olofsson, M. Buoncervello et al., , p.673

. Milito, Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: 674 implications for cancer therapies, Autophagy, vol.10, issue.4, p.58, 2014.

Y. Chen, E. Mcmillan-ward, J. Kong, S. J. Israels, and S. B. Gibson, Mitochondrial electron-676 transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by 677 reactive oxygen species, J Cell Sci, vol.120, p.59, 2007.

B. Zhao, L. Qiang, J. Joseph, B. Kalyanaraman, B. Viollet et al., Mitochondrial 679 dysfunction activates the AMPK signaling and autophagy to promote cell survival, Genes Dis, vol.3, issue.1, pp.82-87, 2016.

C. Settembre, R. De-cegli, G. Mansueto, P. K. Saha, F. Vetrini et al.,

D. Carissimo, T. J. Palmer, A. C. Klisch, D. D. Wollenberg, L. Bernardo et al., TFEB controls cellular lipid metabolism through a starvation-induced 684 autoregulatory loop, Nat Cell Biol, vol.15, issue.6, p.61, 2013.

L. Fernandez-mosquera, C. V. Diogo, K. F. Yambire, G. L. Santos, M. L. Sanchez et al.,

L. C. Rustin, I. Lopez, N. Milosevic, and . Raimundo, Acute and chronic mitochondrial respiratory 687 chain deficiency differentially regulate lysosomal biogenesis, vol.7, p.62, 2017.

M. Graef and J. Nunnari, Mitochondria regulate autophagy by conserved signalling 689 pathways, EMBO J, vol.30, issue.11, p.63, 2011.

H. E. Thomas, Y. Zhang, J. A. Stefely, S. R. Veiga, G. Thomas et al., , p.691

, Mitochondrial Complex I Activity Is Required for Maximal Autophagy, Cell Rep, vol.24, issue.9, p.64, 2018.

R. V. Duran, E. D. Mackenzie, H. Boulahbel, C. Frezza, L. Heiserich et al.,

M. N. Rocha, E. Hall, and . Gottlieb, HIF-independent role of prolyl hydroxylases in the cellular 695 response to amino acids, Oncogene, vol.32, issue.38, p.65, 2013.

R. V. Duran, W. Oppliger, A. M. Robitaille, L. Heiserich, R. Skendaj et al., 697 Glutaminolysis activates Rag-mTORC1 signaling, Mol Cell, vol.47, issue.3, p.66, 2012.

S. Lorin, M. J. Tol, C. Bauvy, A. Strijland, C. Pous et al., , p.699

, Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy

, Autophagy, vol.701, issue.9, p.67, 2013.

V. H. Villar, T. L. Nguyen, V. Delcroix, S. Teres, M. Bouchecareilh et al.,

M. Vacher, P. Priault, R. V. Soubeyran, and . Duran, mTORC1 inhibition in cancer cells protects 703 from glutaminolysis-mediated apoptosis during nutrient limitation, Nat Commun, vol.8, p.68, 2017.

C. H. Eng, K. Yu, J. Lucas, E. White, R. T. Abraham-;-l et al., Inducing autophagy: a comparative 708 phosphoproteomic study of the cellular response to ammonia and rapamycin, p. ra31. 707 69. Harder, vol.3, pp.339-55, 2010.

G. Marino and G. Kroemer, Ammonia: a diffusible factor released by proliferating cells that 711 induces autophagy, Sci Signal, vol.3, issue.124, p.71, 2010.

Y. H. Ko, Z. Lin, N. Flomenberg, R. G. Pestell, A. Howell et al.,

. Martinez-outschoorn, Glutamine fuels a vicious cycle of autophagy in the tumor stroma and 714 oxidative mitochondrial metabolism in epithelial cancer cells: implications for preventing 715 chemotherapy resistance, Cancer Biol Ther, vol.12, issue.12, p.72, 2011.

D. Whitaker-menezes, U. E. Martinez-outschoorn, Z. Lin, A. Ertel, N. Flomenberg et al., , p.717

R. C. Witkiewicz, A. Birbe, S. Howell, R. Pavlides, R. G. Gandara et al., Evidence for a stromal-epithelial "lactate shuttle" in human tumors: MCT4 is 719 a marker of oxidative stress in cancer-associated fibroblasts, Cell Cycle, vol.10, issue.11, p.73, 2011.

Y. J. Chen, N. G. Mahieu, X. Huang, M. Singh, P. A. Crawford et al., J, vol.722

G. J. Schaefer and . Patti, Lactate metabolism is associated with mammalian mitochondria, Chem Biol, vol.723, issue.11, p.74, 2016.

C. Corbet and O. Feron, Emerging roles of lipid metabolism in cancer progression, Curr Opin, vol.725

, Clin Nutr Metab Care, vol.20, issue.4, p.75, 2017.

I. R. Schlaepfer, L. Rider, L. U. Rodrigues, M. A. Gijon, C. T. Pac et al.,

L. M. Sirintrapun, R. H. Glode, S. D. Eckel, and . Cramer, Lipid catabolism via CPT1 as a 728 therapeutic target for prostate cancer, Mol Cancer Ther, vol.13, issue.10, p.76, 2014.

Y. A. Wen, X. Xing, J. W. Harris, Y. Y. Zaytseva, M. I. Mitov et al., , p.730

T. Evers and . Gao, Adipocytes activate mitochondrial fatty acid oxidation and autophagy to 731 promote tumor growth in colon cancer. Cell Death Dis, vol.8, p.77, 2017.

Y. Tabe, S. Yamamoto, K. Saitoh, K. Sekihara, N. Monma et al.,

J. Ruvolo, N. Ishizawa, S. Hail, M. Kazuno, H. Igarashi et al.,

T. Nagaoka, Y. Miida, M. Hayashizaki, M. Konopleva, and . Andreeff, Bone Marrow Adipocytes, vol.735

, Facilitate Fatty Acid Oxidation Activating AMPK and a Transcriptional Network Supporting 736 Survival of Acute Monocytic Leukemia Cells, Cancer Res, vol.77, issue.6, p.78, 2017.

A. S. Rambold, S. Cohen, and J. Lippincott-schwartz, Fatty acid trafficking in starved cells: 738 regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics, Dev Cell, vol.739, issue.6, pp.678-92, 2015.

A. Alexander, S. L. Cai, J. Kim, A. Nanez, M. Sahin et al., , p.741

M. D. Person, D. Kusewitt, G. B. Mills, M. B. Kastan, and C. L. Walker, ATM signals to TSC2 in the 742 cytoplasm to regulate mTORC1 in response to ROS, Proc Natl Acad Sci, vol.107, issue.9, p.80, 2010.

C. Song, S. K. Mitter, X. Qi, E. Beli, H. V. Rao et al.,

A. S. Bowes-rickman, M. B. Lewin, M. E. Grant, and . Boulton, Oxidative stress-mediated 746 NFkappaB phosphorylation upregulates p62/SQSTM1 and promotes retinal pigmented 747 epithelial cell survival through increased autophagy, PLoS One, vol.12, issue.2, p.81, 2017.

R. Scherz-shouval, E. Shvets, E. Fass, H. Shorer, L. Gil et al., Reactive oxygen species 749 are essential for autophagy and specifically regulate the activity of Atg4, EMBO J, vol.750, issue.7, p.82, 2007.

X. Zhang, X. Cheng, L. Yu, J. Yang, R. Calvo et al., , p.752

J. Delling, M. Marugan, H. Ferrer, and . Xu, MCOLN1 is a ROS sensor in lysosomes that 753 regulates autophagy, Nat Commun, vol.7, p.83, 2016.

Q. Wang, L. Huang, and J. Yue, Oxidative stress activates the TRPM2-Ca(2+)-CaMKII-ROS 755 signaling loop to induce cell death in cancer cells, Biochim Biophys Acta Mol Cell Res, vol.756, issue.6, pp.957-967, 2017.

Y. Chen, M. B. Azad, and S. B. Gibson, Superoxide is the major reactive oxygen species 758 regulating autophagy, Cell Death. Differ, vol.16, issue.7, p.85, 2009.

A. E. Li, H. Ito, . Rovira, K. S. Ii, K. Kim et al., A role for 760 reactive oxygen species in endothelial cell anoikis, Circ Res, vol.85, issue.4, p.86, 1999.

Z. T. Schafer, A. R. Grassian, L. Song, Z. Jiang, Z. Gerhart-hines et al., Antioxidant and oncogene rescue of metabolic defects caused by loss of 763 matrix attachment, Nature, vol.461, issue.7260, pp.109-122, 2009.

A. Avivar-valderas, E. Salas, E. Bobrovnikova-marjon, J. A. Diehl, C. Nagi et al., , vol.765

. Aguirre-ghiso, PERK integrates autophagy and oxidative stress responses to promote survival 766 during extracellular matrix detachment, Mol Cell Biol, vol.31, issue.17, p.88, 2011.

T. Ozben, Oxidative stress and apoptosis: impact on cancer therapy, J Pharm Sci, vol.96, issue.9, p.89, 2007.

C. Amantini, M. B. Morelli, M. Nabissi, C. Cardinali, M. Santoni et al., , p.770

, Capsaicin triggers autophagic cell survival which drives epithelial mesenchymal transition and 771 chemoresistance in bladder cancer cells in an Hedgehog-dependent manner, Oncotarget, vol.7, issue.31, pp.50180-50194, 2016.

N. Chen, L. Wu, H. Yuan, and J. Wang, ROS/Autophagy/Nrf2 Pathway Mediated

, Radiation Induced Radio-Resistance in Human Lung Adenocarcinoma A549 Cell, Int J Biol Sci, vol.775, issue.7, pp.833-877, 2015.

D. Naon and L. Scorrano, At the right distance: ER-mitochondria juxtaposition in cell life and 777 death, Biochim Biophys Acta, vol.1843, issue.10, p.92, 2014.

D. W. Hailey, A. S. Rambold, P. Satpute-krishnan, K. Mitra, R. Sougrat et al., , p.779

. Lippincott-schwartz, Mitochondria supply membranes for autophagosome biogenesis during 780 starvation, Cell, vol.141, issue.4, p.93, 2010.

Y. Kabeya, N. Mizushima, A. Yamamoto, S. Oshitani-okamoto, Y. Ohsumi et al., GABARAP and GATE16 localize to autophagosomal membrane depending on form-II 783 formation, J Cell Sci, vol.782, p.94, 2004.

C. Cardenas, R. A. Miller, I. Smith, T. Bui, J. Molgo et al.,

C. B. Parker, M. J. Thompson, K. R. Birnbaum, J. K. Hallows, and . Foskett, Essential regulation of 786 cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria, Cell, vol.787, issue.2, p.95, 2010.

G. Bidaux, D. Gordienko, G. Shapovalov, V. Farfariello, A. S. Borowiec et al., , p.789

M. Lemonnier, R. Gueguinou, G. Guibon, M. Fromont, Y. Paillard et al.,

D. Dewailly, P. Gkika, J. C. Lopez-alvarado, L. Menendez, C. Heliot et al.,

. Prevarskaya, 4TM-TRPM8 channels are new gatekeepers of the ER-mitochondria Ca(2+) 792 transfer, Biochim Biophys Acta Mol Cell Res, vol.1865, issue.7, p.96, 2018.

B. O'rourke, Mitochondrial ion channels, Annu Rev Physiol, vol.69, p.97, 2007.

I. Szabo and M. Zoratti, Mitochondrial channels: ion fluxes and more, Physiol Rev, vol.795, issue.2, p.98, 2014.

C. Cardenas, M. Muller, A. Mcneal, A. Lovy, F. Jana et al., , p.797

J. A. Diehl, T. W. Ridky, and J. K. Foskett, Selective Vulnerability of Cancer Cells by Inhibition of 798

;. Ca, P. Gomez-suaga, S. Paillusson, R. Stoica, W. Noble et al., , vol.14, p.801, 2016.

, Mitochondria Tethering Complex VAPB-PTPIP51 Regulates Autophagy, vol.27, pp.802-371, 2017.

M. S. Herrera-cruz and T. Simmen, Cancer: Untethering Mitochondria from the Endoplasmic 804 Reticulum? Front Oncol, vol.7, p.105, 2017.

S. M. Jin, M. Lazarou, C. Wang, L. A. Kane, D. P. Narendra et al., Mitochondrial 806 membrane potential regulates PINK1 import and proteolytic destabilization by PARL, J Cell, p.807

, Biol, vol.191, issue.5, pp.933-975, 2010.

D. P. Narendra, S. M. Jin, A. Tanaka, D. F. Suen, C. A. Gautier et al., , p.809

Y. , PINK1 is selectively stabilized on impaired mitochondria to activate Parkin, PLoS Biol, vol.8, issue.1, p.1000298, 2010.

S. A. Sarraf, M. Raman, V. Guarani-pereira, M. E. Sowa, E. L. Huttlin et al., 812 Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial 813 depolarization, Nature, vol.496, issue.7445, pp.372-378, 2013.

S. Geisler, K. M. Holmstrom, D. Skujat, F. C. Fiesel, O. C. Rothfuss et al., , p.815

, PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1, vol.12, pp.119-150, 2010.

J. Y. Lee, Y. Nagano, J. P. Taylor, K. L. Lim, and T. P. Yao, Disease-causing mutations in parkin 818 impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy, J Cell, vol.819

, Biol, vol.189, issue.4, pp.671-680, 2010.

E. Hollville, R. G. Carroll, S. P. Cullen, and S. J. Martin, Bcl-2 family proteins participate in 821 mitochondrial quality control by regulating Parkin/PINK1-dependent mitophagy, Mol Cell, vol.822, issue.3, pp.451-66, 2014.

M. Lazarou, D. A. Sliter, L. A. Kane, S. A. Sarraf, C. Wang et al., The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. 825 Nature, vol.824, pp.309-314, 2015.

B. Richter, D. A. Sliter, L. Herhaus, A. Stolz, C. Wang et al., , p.827

S. A. Wagner, R. J. Youle, and I. Dikic, Phosphorylation of OPTN by TBK1 enhances its binding to 828 Ub chains and promotes selective autophagy of damaged mitochondria, Proc Natl Acad Sci U 829 S A, vol.113, issue.15, pp.4039-4083, 2016.

L. E. Drake, M. Z. Springer, L. P. Poole, C. J. Kim, and K. F. Macleod, Expanding perspectives on 831 the significance of mitophagy in cancer, Semin Cancer Biol, vol.47, pp.110-124, 2017.

G. Bellot, R. Garcia-medina, P. Gounon, J. Chiche, D. Roux et al., , p.833

, Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 834 and BNIP3L via their BH3 domains, Mol Cell Biol, vol.29, issue.10, pp.2570-81, 2009.

H. M. Sowter, P. J. Ratcliffe, P. Watson, A. H. Greenberg, and A. L. Harris, HIF-1-dependent 836 regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors, Cancer Res, vol.837, issue.18, pp.6669-73, 2001.

L. Liu, D. Feng, G. Chen, M. Chen, Q. Zheng et al., , p.839

P. Xue, B. Li, X. Wang, H. Jin, J. Wang et al., 840 Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in 841 mammalian cells, Nat Cell Biol, vol.14, issue.2, pp.177-85, 2012.

S. Melser, E. H. Chatelain, J. Lavie, W. Mahfouf, C. Jose et al.,

H. R. Elgersma, R. Rezvani, G. Rossignol, and . Benard, Rheb regulates mitophagy induced by 844 mitochondrial energetic status, Cell Metab, vol.17, issue.5, pp.719-749, 2013.

D. Ivankovic, K. Y. Chau, A. H. Schapira, and M. E. Gegg, Mitochondrial and lysosomal 846 biogenesis are activated following PINK1/parkin-mediated mitophagy, J Neurochem, vol.847, issue.2, pp.388-402, 2016.

C. T. Chu, J. Ji, R. K. Dagda, J. F. Jiang, Y. Y. Tyurina et al.,

D. Shrivastava, K. Z. Mohammadyani, J. Wang, J. Zhu, and K. Klein-seetharaman,

A. A. Balasubramanian, G. Amoscato, Z. Borisenko, A. M. Huang, A. Gusdon et al.,

R. Steer, C. Wang, S. Baty, I. Watkins, H. Bahar et al., Cardiolipin 852 externalization to the outer mitochondrial membrane acts as an elimination signal for 853 mitophagy in neuronal cells, Nat Cell Biol, vol.15, issue.10, pp.1197-1205, 2013.

V. E. Kagan, J. Jiang, Z. Huang, Y. Y. Tyurina, C. Desbourdes et al., , p.855

V. A. Verma, A. A. Tyurin, A. Kapralov, G. Cheikhi, D. Mao et al.,

Y. Shen, M. L. Li, M. Greenberg, M. Tokarska-schlattner, M. L. Boissan et al., H4)-mediated 858 externalization of cardiolipin enables elimination of depolarized mitochondria by mitophagy

, Cell Death Differ, vol.23, issue.7, pp.1140-51, 2016.

Y. Lee, H. Y. Lee, R. A. Hanna, and A. B. Gustafsson, Mitochondrial autophagy by Bnip3 involves, p.861

, Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes, Am J 862 Physiol Heart Circ Physiol, vol.301, issue.5, pp.1924-1955, 2011.

L. Buhlman, M. Damiano, G. Bertolin, R. Ferrando-miguel, A. Lombes et al., 864 Functional interplay between Parkin and Drp1 in mitochondrial fission and clearance, Biochim 865 Biophys Acta, vol.1843, issue.9, pp.2012-2038, 2014.

W. Wu, C. Lin, K. Wu, L. Jiang, X. Wang et al.,

J. Lu, R. Wang, L. Zhu, S. Zhang, N. Sui et al., FUNDC1 868 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic 869 conditions, EMBO J, vol.35, issue.13, pp.1368-84, 2016.

V. Gelmetti, P. Rosa, L. Torosantucci, E. S. Marini, A. Romagnoli et al.,

G. M. Vignone, E. M. Fimia, and . Valente, PINK1 and BECN1 relocalize at mitochondria-872 associated membranes during mitophagy and promote ER-mitochondria tethering and 873 autophagosome formation, Autophagy, vol.13, issue.4, pp.654-669, 2017.

M. Fujiwara, H. Marusawa, H. Q. Wang, A. Iwai, K. Ikeuchi et al., , p.875

T. Takahashi and . Chiba, Parkin as a tumor suppressor gene for hepatocellular carcinoma

, Oncogene, vol.27, issue.46, pp.6002-6013, 2008.

C. Li, Y. Zhang, X. Cheng, H. Yuan, S. Zhu et al., , vol.878

M. T. Klionsky, H. J. Lotze, R. Zeh, D. Kang, and . Tang, PINK1 and PARK2 Suppress Pancreatic 879 Tumorigenesis through Control of Mitochondrial Iron-Mediated Immunometabolism, Dev 880 Cell, vol.46, issue.4, p.8, 2018.

G. Poulogiannis, R. E. Mcintyre, M. Dimitriadi, J. R. Apps, C. H. Wilson et al.,

A. H. Cantley, D. J. Wyllie, M. J. Adams, and . Arends, PARK2 deletions occur frequently in 883 sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice, Natl Acad Sci, vol.884, issue.34, pp.15145-50, 2010.

S. Veeriah, B. S. Taylor, S. Meng, F. Fang, E. Yilmaz et al., , p.886

W. Hanrahan, M. Pao, C. Ladanyi, A. Sander, E. C. Heguy et al.,

T. F. Liau, I. K. Cloughesy, D. B. Mellinghoff, T. A. Solit, and . Chan, Somatic mutations of the 888

, Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies

, Nat Genet, vol.42, issue.1, pp.77-82, 2010.

H. H. Hu, C. Kannengiesser, S. Lesage, J. Andre, S. Mourah et al., , p.891

M. Seguin, A. Bagot, C. Bensussan, L. Lebbe, P. Deschamps et al.,

A. Paillerets, R. Tsalamlal, S. Kumar, B. Klebe, N. Grandchamp et al.,

N. Brice, N. Dumaz, and . Soufir, PARKIN Inactivation Links Parkinson's Disease to Melanoma, J 894 Natl Cancer Inst, vol.108, issue.3, 2016.

S. Lee, J. She, B. Deng, J. Kim, M. De-andrade et al., , p.896

Y. Wu, A. H. Limper, M. C. Aubry, C. Wendt, P. Biterman et al., Multiple-level 897 validation identifies PARK2 in the development of lung cancer and chronic obstructive 898 pulmonary disease, Oncotarget, vol.7, issue.28, pp.44211-44223, 2016.

A. Letessier, S. Garrido-urbani, C. Ginestier, G. Fournier, B. Esterni et al.,

L. Geneix, P. Xerri, P. Dubreuil, E. Viens, J. Charafe-jauffret et al.,

M. Lopez and . Chaffanet, Correlated break at PARK2/FRA6E and loss of AF-6/Afadin protein 902 expression are associated with poor outcome in breast cancer, Oncogene, vol.26, issue.2, pp.903-298, 2007.

R. Cesari, E. S. Martin, G. A. Calin, F. Pentimalli, R. Bichi et al., , p.905

M. Shimizu, V. Masciullo, G. D'andrilli, G. Scambia, M. C. Picchio et al., Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a 907 candidate tumor suppressor gene on chromosome 6q25-q27, Proc Natl Acad Sci, vol.908, issue.10, pp.5956-61, 2003.

C. Zhang, M. Lin, R. Wu, X. Wang, B. Yang et al., Parkin, a p53 910 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect, Proc 911 Natl Acad Sci, vol.108, pp.16259-64, 2011.

J. Liu, C. Zhang, Y. Zhao, X. Yue, H. Wu et al.,

D. Gatza, J. Xia, E. Gao, B. G. White, W. Haffty et al., Parkin targets HIF-1alpha for 914 ubiquitination and degradation to inhibit breast tumor progression, Nat Commun, vol.8, issue.1, pp.915-1823, 2017.

M. Akada, T. Crnogorac-jurcevic, S. Lattimore, P. Mahon, R. Lopes et al.,

N. R. Matsuno, H. Lemoine-;-gang, R. Dhingra, J. Lin, Y. Hai et al., Intrinsic chemoresistance to gemcitabine is associated with 918 147

T. Leygue, J. R. Klonisch, L. A. Davie, and . Kirshenbaum, PDK2-mediated alternative splicing 970 switches Bnip3 from cell death to cell survival, J Cell Biol, vol.210, issue.7, pp.1101-1116, 2015.

E. Gazzano, L. Lazzarato, B. Rolando, J. Kopecka, S. Guglielmo et al., Mitochondrial Delivery of Phenol Substructure Triggers Mitochondrial 973 Depolarization and Apoptosis of Cancer Cells, Front Pharmacol, vol.9, p.580, 2018.

T. G. Biel and V. A. Rao, Mitochondrial dysfunction activates lysosomal-dependent mitophagy 975 selectively in cancer cells, Oncotarget, vol.9, issue.1, pp.995-1011, 2018.

S. Feng, H. Li, Y. Tai, J. Huang, Y. Su et al., , p.977

, Canonical transient receptor potential 3 channels regulate mitochondrial calcium uptake

, Proc Natl Acad Sci U S A, vol.110, issue.27, pp.11011-11017, 2013.

B. A. Miller, N. E. Hoffman, S. Merali, X. Q. Zhang, J. Wang et al.,

C. A. Gao, K. Barrero, J. Mallilankaraman, T. Song, I. Gu et al., , p.981

M. Feldman, J. Y. Madesh, and . Cheung, TRPM2 channels protect against cardiac ischemia-982 reperfusion injury: role of mitochondria, J Biol Chem, vol.289, issue.11, pp.7615-7644, 2014.

E. J. Griffiths and G. A. Rutter, Mitochondrial calcium as a key regulator of mitochondrial ATP 984 production in mammalian cells, Biochim Biophys Acta, vol.1787, issue.11, pp.1324-1357, 2009.

M. Laskowski, B. Augustynek, B. Kulawiak, P. Koprowski, P. Bednarczyk et al., What do we not know about mitochondrial potassium channels?, Biochim 987 Biophys Acta, vol.1857, pp.1247-1257, 2016.

M. S. Kane, A. Paris, P. Codron, J. Cassereau, V. Procaccio et al.,

. Chevrollier, Current mechanistic insights into the CCCP-induced cell survival response
URL : https://hal.archives-ouvertes.fr/hal-01964494

, Biochem Pharmacol, vol.148, pp.100-110, 2018.

Y. Sun, A. A. Vashisht, J. Tchieu, J. A. Wohlschlegel, and L. Dreier, Voltage-dependent anion 992 channels (VDACs) recruit Parkin to defective mitochondria to promote mitochondrial 993 autophagy, J Biol Chem, vol.287, issue.48, pp.40652-60, 2012.

T. D. Macvicar, L. V. Mannack, R. M. Lees, and J. D. Lane, Targeted siRNA Screens Identify ER-995 to-Mitochondrial Calcium Exchange in Autophagy and Mitophagy Responses in RPE1 Cells, Int 996 J Mol Sci, vol.16, issue.6, pp.13356-80, 2015.

N. M. Mazure, V. Shoshan-barmatz, Y. Krelin, A. Shteinfer-kuzmine, and T. Arif, Voltage-Dependent Anion 999 Channel 1 As an Emerging Drug Target for Novel Anti-Cancer Therapeutics, Biochim Biophys Acta Bioenerg, vol.1858, issue.8, p.154, 1000.

T. Arif, L. Vasilkovsky, Y. Refaely, A. Konson, and V. Shoshan-barmatz, Silencing VDAC1 1002 Expression by siRNA Inhibits Cancer Cell Proliferation and Tumor Growth In Vivo, Nucleic Acids, vol.3, p.159, 1003.

A. Vultur, C. S. Gibhardt, H. Stanisz, and I. Bogeski, The role of the mitochondrial calcium 1005 uniporter (MCU) complex in cancer, Pflugers Arch, vol.470, issue.8, pp.1149-1163, 2018.

S. Tang, X. Wang, Q. Shen, X. Yang, C. Yu et al., , p.1007

. Ca, +) uniporter is critical for store-operated Ca(2)(+) entry-dependent breast cancer cell 1008 migration, Biochem Biophys Res Commun, vol.458, issue.2, pp.186-93, 2015.

C. Yu, Y. Wang, J. Peng, Q. Shen, M. Chen et al., Mitochondrial calcium uniporter as a target of microRNA-340 and promoter of 1011 metastasis via enhancing the Warburg effect, Oncotarget, vol.8, issue.48, pp.83831-83844, 2017.

T. Ren, H. Zhang, J. Wang, J. Zhu, M. Jin et al., MCU-dependent mitochondrial Ca(2+) inhibits NAD(+)/SIRT3/SOD2 pathway to 1014 promote ROS production and metastasis of HCC cells, Oncogene, vol.36, issue.42, pp.5897-5909, 2017.

K. Mallilankaraman, C. Cardenas, P. J. Doonan, H. C. Chandramoorthy, K. M. Irrinki et al., , p.1016

G. Csordas, P. Madireddi, J. Yang, M. Muller, R. Miller et al., , p.1017

J. K. Hajnoczky, M. Foskett, and . Madesh, MCUR1 is an essential component of mitochondrial 1018 Ca2+ uptake that regulates cellular metabolism, Nat Cell Biol, vol.14, issue.12, pp.1336-1379, 2012.

D. Tomar, Z. Dong, S. Shanmughapriya, D. A. Koch, T. Thomas et al., , p.1020

S. J. Goldman, S. L. Breves, D. P. Corbally, N. Nemani, J. P. Fairweather et al., , p.1021

F. Song, J. Jana, C. Huang, J. E. Barrero, T. S. Rabinowitz et al.,

A. Rockman, S. Dietrich, J. Merali, P. Caplan, R. S. Stathopulos et al.,

W. J. Houser, V. Koch, V. M. Patel, J. W. Gohil, S. Elrod et al., MCUR1 Is a 1024 Scaffold Factor for the MCU Complex Function and Promotes Mitochondrial Bioenergetics. 1025 Cell Rep, vol.15, pp.1673-85, 2016.

T. Ren, J. Wang, H. Zhang, P. Yuan, J. Zhu et al., , 1027.

H. Zhang, J. Yang, and . Xing, MCUR1-Mediated Mitochondrial Calcium Signaling Facilitates Cell 1028 Survival of Hepatocellular Carcinoma via Reactive Oxygen Species-Dependent P53

, Degradation, Antioxid Redox Signal, vol.28, issue.12, pp.1120-1136, 2018.

S. J. Chen, N. E. Hoffman, S. Shanmughapriya, L. Bao, K. Keefer et al.,

T. Takahashi, I. Abraham, J. Hirschler-laszkiewicz, X. Q. Wang, J. Zhang et al.,

Y. I. Shi, M. Kawasawa, T. Bayerl, M. Sun, H. G. Barbour et al., A splice variant of the human ion channel TRPM2 modulates neuroblastoma 1034 tumor growth through hypoxia-inducible factor (HIF)-1/2alpha, J Biol Chem, vol.289, issue.52, pp.1035-36284, 2014.

S. Almasi, B. E. Kennedy, M. El-aghil, A. M. Sterea, S. Gujar et al., 1037 TRPM2 channel-mediated regulation of autophagy maintains mitochondrial function and 1038 promotes gastric cancer cell survival via the JNK-signaling pathway, J Biol Chem, issue.10, pp.3637-3650, 2018.

D. W. Koh, D. P. Powell, S. D. Blake, J. L. Hoffman, M. M. Hopkins et al., Enhanced 1041 cytotoxicity in triple-negative and estrogen receptorpositive breast adenocarcinoma cells due 1042 to inhibition of the transient receptor potential melastatin-2 channel, Oncol Rep, vol.34, issue.3, pp.1043-1589, 2015.