A. Larocca, R. Mina, F. Gay, S. Bringhen, and M. Boccadoro, Emerging drugs and combinations to treat multiple myeloma, Oncotarget, vol.8, pp.60656-60672, 2017.

P. L. Bergsagel, Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma, Blood, vol.106, pp.296-303, 2005.

S. Ely, Mutually exclusive cyclin-dependent kinase 4/cyclin D1 and cyclindependent kinase 6/cyclin D2 pairing inactivates retinoblastoma protein and promotes cell cycle dysregulation in multiple myeloma, Clin. Cancer Res, vol.65, pp.11345-11353, 2005.

P. Hydbring, M. Malumbres, and P. Sicinski, Non-canonical functions of cell cycle cyclins and cyclin-dependent kinases, Nat. Rev. Mol. Cell Biol, vol.17, pp.280-292, 2016.

G. Tchakarska and B. Sola, The double dealing of cyclin D1, Cell Cycle, vol.19, pp.163-178, 2020.

S. Bustany, J. Cahu, P. Guardiola, and B. Sola, Cyclin D1 sensitizes myeloma cells to endoplasmic reticulum stress-mediated apoptosis by activating the unfolded protein response pathway, BMC Cancer, vol.15, p.262, 2015.

C. Wang, Cyclin D1 repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function, Proc. Natl Acad. Sci. USA, vol.103, pp.11567-11572, 2006.

G. Tchakarska, M. Roussel, X. Troussard, and B. Sola, Cyclin D1 inhibits mitochondrial activity in B cells, Cancer Res, vol.71, pp.1690-1699, 2011.

S. Kamarajugadda, Cyclin D1 represses peroxisome proliferator-activated receptor alpha and inhibits fatty acid oxidation, Oncotarget, vol.7, pp.47674-47686, 2016.

K. Bhalla, Cyclin D1 represses gluconeogenesis via inhibition of the transcriptional coactivator PGC1?, Diabetes, vol.63, pp.3266-3278, 2014.

J. A. Diehl, F. Zindy, and C. J. Sherr, Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway, Genes Dev, vol.11, pp.957-972, 1997.

Y. Lee, Cyclin D1-Cdk4 controls glucose metabolism independently of cell cycle progression, Nature, vol.510, pp.547-551, 2014.

T. Matsumoto, S. Jimi, K. Migita, Y. Takamatsu, and S. Hara, Inhibition of glucose transporter 1 induces apoptosis and sensitizes multiple myeloma cells to conventional chemotherapeutic agents, Leuk. Res, vol.41, pp.103-110, 2016.

X. Qin, Extracellular matrix protein reelin promotes myeloma progression by facilitating tumor cell proliferation and glycolysis, Sci. Rep, vol.7, p.45305, 2017.

M. Schoenhals, Hypoxia favors the generation of human plasma cells, Cell Cycle, vol.16, pp.1104-1117, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01529310

Y. Hu, Inhibition of hypoxia inducible factor-1 function enhances the sensitivity of multiple myeloma cells to melphalan, Mol. Cancer Ther, vol.8, pp.2329-2338, 2009.

S. P. Mathupala, A. Rempel, and P. L. Pedersen, Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions, J. Biol. Chem, vol.276, pp.43407-43412, 2001.

J. W. Kim, P. Gao, Y. C. Liu, G. L. Semenza, and C. V. Dang, Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1, Mol. Cell Biol, vol.27, pp.7381-7393, 2007.

H. G. Lee, Regulation of HK2 expression through alterations in CpG methylation of the HK2 promoter during progression of hepatocellular carcinoma, Oncotarget, vol.7, pp.41798-41810, 2016.

F. Zhan, The molecular classification of multiple myeloma, Blood, vol.108, pp.2020-2028, 2006.

F. Zhan, Gene-expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis, Blood, vol.109, pp.1692-1700, 2007.

B. Nair, Superior results of Total Therapy 3 (2003-33) in gene expression profiling-defined low-risk multiple myeloma confirmed in subsequent trial 2006-66 with VRD maintenance, Blood, vol.115, pp.4168-4173, 2010.

L. Arzoine, N. Zilberberg, R. Ben-romano, and V. Shoshan-barmatz, Voltagedependent anion channel 1-based peptides interact with hexokinase to prevent its anti-apoptotic activity, J. Biol. Chem, vol.284, pp.3946-3955, 2009.

H. Q. Ju, ITD mutation in FLT3 tyrosine kinase promotes Warburg effect and renders therapeutic sensitivity to glycolytic inhibition, Leukemia, vol.31, pp.2143-2150, 2017.

D. Sante and G. , ). D-Type Cyclins and Cancer. Current Cancer Research, pp.61-90, 2018.

P. Aggarwal, Nuclear cyclin D1/CDK4 kinase regulates CUL4 expression and triggers neoplastic growth via activation of the PRMT5 methyltransferase, Cancer Cell, vol.18, pp.329-340, 2010.

Y. Li, PRMT5 is required for lymphomagenesis triggered by multiple oncogenic drivers, Cancer Discov, vol.5, pp.288-303, 2015.

C. J. Sherr, D. Beach, and G. I. Shapiro, Targeting CDK4 and CDK6: from discovery to therapy, Cancer Discov, vol.6, pp.353-367, 2015.

R. B. Hamanaka and N. S. Chandel, Targeting glucose metabolism for cancer therapy, J. Exp. Med, vol.216, pp.211-215, 2012.

S. Xu, An HK2 antisense oligonucleotide induces synthetic lethality in HK1+ HK2+ multiple myeloma, Cancer Res, vol.79, pp.2748-2760, 2019.

K. Bhalla, Role of hypoxia in diffuse large B-cell lymphoma: metabolic translation of HK2 facilitates development of DLBCL, Sci. Rep, vol.8, p.744, 2018.

A. Luengo, D. Y. Gui, and M. G. Vander-heiden, Targeting metabolism for cancer therapy, Cell Chem. Biol, vol.24, pp.1161-1180, 2017.

S. Bustany, Cyclin D1 unbalances the redox status controlling cell adhesion, migration, and drug resistance in myeloma cells, Oncotarget, vol.7, pp.45214-45224, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01762004

C. Coudre, HIF-1? and rapamycin act as gerosuppressant in multiple myeloma cells upon genotoxic stress, Cell Cycle, vol.15, pp.2174-2182, 2016.

K. Rouault-pierre, HIF-2? protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress, Cell Stem Cell, vol.13, pp.549-563, 2013.

S. Chabi, Hypoxia regulates lymphoid development of human hematopoietic progenitors, Cell Rep, vol.29, pp.2307-2320, 2019.

H. Miloudi, K. Leroy, F. Jardin, and B. Sola, STAT6 is a cargo of exportin 1: Biological relevance in primary mediastinal B-cell lymphoma, Cell Signal, vol.46, pp.76-82, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01725066

B. M. Emerling, F. Weinberg, J. L. Liu, T. W. Mak, and N. S. Chandel, PTEN regulates p300-dependent hypoxia-inducible factor 1 transcriptional activity through forkhead transcription factor 3a (FOXO3a), Proc. Natl Acad. Sci. USA 105, pp.2622-2627, 2008.

D. E. Richard, E. Berra, E. Gothie, D. Roux, and J. Pouyssegur, p42/p44 mitogenactivated protein kinases phosphorylate hypoxia-inducible factor 1alpha (HIF-1alpha) and enhance the transcriptional activity of HIF-1, J. Biol. Chem, vol.274, pp.32631-32637, 1999.

S. Body, Cytoplasmic cyclin D1 controls the migration and invasiveness of mantle lymphoma cells, Sci. Rep, vol.7, p.13946, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01725070

V. Popovici, Effect of training-sample size and classification difficulty on the accuracy of genomic predictors, Breast Cancer Res, vol.12, p.5, 2010.

C. L. Wilson and C. J. Miller, SimpleAffy: a BioConductor package for Affymetrix Quality Control and data analysis, Bioinformatics, vol.21, pp.3683-3685, 2005.