M. A. Abdel-rahman, M. Omran, I. M. Abdel-nabi, O. A. Nassier, and B. J. Schemerhorn, Neurotoxic and cytotoxic effects of venom from different populations of the Egyptian Scorpio maurus palmatus, Toxicon, vol.55, issue.2, pp.298-306, 2010.

E. Afgan, D. Baker, B. Batut, M. Van-den-beek, D. Bouvier et al., The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update, Nucleic Acids Res, vol.46, issue.W1, pp.537-581, 2018.

Y. Bai, Q. Zhao, M. He, X. Ye, and X. Zhang, Extensive characterization and differential analysis of endogenous peptides from Bombyx batryticatus using mass spectrometric approach, J Pharm Biomed Anal, vol.163, pp.78-87, 2019.

J. Bao, R. Ding, X. Jia, Y. Liang, F. Liu et al., Fast identification of anticancer constituents in Forsythiae Fructus based on metabolomics approaches, J Pharm Biomed Anal, vol.154, pp.312-332, 2018.

R. C. Bernardi, E. Firmino, A. Mendonça, D. Sguarizi-antonio, M. C. Pereira et al., Intraspecific variation and influence of diet on the venom chemical profile of the Ectatomma brunneum Smith (Formicidae) ant evaluated by photoacoustic spectroscopy, J Photochem Photobiol B, vol.175, pp.200-206, 2017.

S. Bijlsma, I. Bobeldijk, E. R. Verheij, R. Ramaker, S. Kochhar et al., Large-scale human metabolomics studies: a strategy for data (pre-) processing and validation, Anal Chem, vol.78, issue.2, pp.567-74, 2006.

J. Boekel, J. M. Chilton, I. R. Cooke, P. L. Horvatovich, P. D. Jagtap et al., Multi-omic data analysis using Galaxy, Nat Biotechnol, vol.33, pp.137-146, 2015.

W. Chen, X. Yang, X. Yang, L. Zhai, Z. Lu et al., Antimicrobial peptides from the venoms of Vespa bicolor Fabricius, Peptides, vol.29, issue.11, pp.1887-92, 2008.

T. Chen, Y. Zuo, G. Dong, L. Liu, and H. Zhou, An integrated strategy for rapid discovery and identification of quality markers in Guanxin Kangtai preparation using UHPLC-TOF/MS and multivariate statistical analysis, Phytomedicine, vol.44, pp.239-285, 2018.

C. T. Cologna, J. Cardoso, M. Degueldre, G. Upert, and N. Gilles, Peptidomic comparison and characterization of the major components of the venom of the giant ant Dinoponera quadriceps collected in four different areas of Brazil, J Proteome, vol.94, pp.413-435, 2013.

C. T. Cologna, R. S. Rodrigues, J. Santos, E. De-pauw, E. C. Arantes et al., Peptidomic investigation of Neoponera villosa venom by high-resolution mass spectrometry: seasonal and nesting habitat variations, J Venom Anim Toxins Incl Trop Dis, vol.24, p.6, 2018.

E. L. Danneels, M. Van-vaerenbergh, G. Debyser, B. Devreese, and D. C. De-graaf, Honeybee venom proteome profile of queens and winter bees as determined by a mass spectrometric approach, Toxins (Basel), vol.7, issue.11, pp.4468-83, 2015.

N. B. Dias, B. M. De-souza, P. C. Gomes, and M. S. Palma, Peptide diversity in the venom of the social wasp Polybia paulista (Hymenoptera): a comparison of the intra-and inter-colony compositions, Peptides, vol.51, pp.122-152, 2014.

W. B. Dunn, D. Broadhurst, M. Brown, P. N. Baker, C. Redman et al., Metabolic profiling of serum using ultra performance liquid chromatography and the LTQ-Orbitrap mass spectrometry system, J Chromatogr B, vol.871, issue.2, pp.288-98, 2008.

M. Eliasson, S. Rännar, R. Madsen, M. A. Donten, E. Marsden-edwards et al., Strategy for optimizing LC-MS data processing in metabolomics: a design of experiments approach, Anal Chem, vol.84, issue.15, pp.6869-76, 2012.

D. Eliyahu, K. G. Ross, K. L. Haight, L. Keller, and J. Liebig, Venom alkaloid and cuticular hydrocarbon profiles are associated with social organization, queen fertility status, and queen genotype in the fire ant Solenopsis invicta, J Chem Ecol, vol.37, issue.11, pp.1242-54, 2011.

E. M. Forsberg, T. Huan, D. Rinehart, H. P. Benton, B. Warth et al., Data processing, multi-omic pathway mapping, and metabolite activity analysis using XCMS online, Nat Protoc, vol.13, issue.4, pp.633-51, 2018.

J. Gao, J. Wang, Y. He, Y. Qu, L. Lin et al., Proteomic and biochemical analyses of short-tailed pit viper (Gloydius brevicaudus) venom: age-related variation and compositionactivity correlation, J Proteome, vol.105, pp.307-329, 2014.

F. Giacomoni, L. Corguille, G. Monsoor, M. Landi, M. Pericard et al., Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics, Bioinformatics, vol.31, issue.9, pp.1493-1498, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01123263

M. Gilar, A. Belenky, and B. H. Wang, High-throughput biopolymer desalting by solid-phase extraction prior to mass spectrometric analysis, J Chromatogr A, vol.921, issue.1, pp.3-13, 2001.

P. Good, Permutation tests: a practical guide to resampling methods for testing hypotheses, vol.288, 2013.

P. S. Gromski, H. Muhamadali, D. I. Ellis, Y. Xu, E. Correa et al., A tutorial review: metabolomics and partial least squaresdiscriminant analysis-a marriage of convenience or a shotgun wedding, Anal Chim Acta, vol.879, pp.10-23, 2015.

B. Halassy, M. Brgles, L. Habjanec, M. L. Balija, T. Kurtovi? et al., Intraspecies variability in Vipera ammodytes ammodytes venom related to its toxicity and immunogenic potential, Comp Biochem Physiol C, vol.153, issue.2, pp.223-253, 2011.

M. Katajamaa and M. Ore?i?, Data processing for mass spectrometrybased metabolomics, J Chromatogr A, vol.1158, issue.1, pp.318-346, 2007.

C. Kuhl, R. Tautenhahn, C. Böttcher, T. R. Larson, and S. Neumann, CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets, Anal Chem, vol.84, issue.1, pp.283-292, 2012.

G. Libiseller, M. Dvorzak, U. Kleb, E. Gander, T. Eisenberg et al., IPO: a tool for automated optimization of XCMS parameters, BMC Bioinformatics, vol.16, p.118, 2015.

R. Lievense, Pharmaceutical quality by design using JMP®: solving product development and manufacturing problems. Cary: SAS Institute, vol.436, 2018.

Z. Liu, S. Chen, Y. Zhou, C. Xie, B. Zhu et al., Deciphering the venomic transcriptome of killer-wasp Vespa velutina, Sci Rep, vol.5, p.9454, 2015.

K. Monceau, O. Bonnard, and D. Thiéry, Vespa velutina: a new invasive predator of honeybees in Europe, J Pest Sci, vol.87, issue.1, pp.1-16, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00980802

S. Naz, M. Vallejo, A. García, and C. Barbas, Method validation strategies involved in non-targeted metabolomics, J Chromatogr A, vol.1353, pp.99-105, 2014.

G. S. Nystrom, M. J. Ward, S. A. Ellsworth, and D. R. Rokyta, Sex-based venom variation in the eastern bark centipede (Hemiscolopendra marginata), Toxicon, vol.169, pp.45-58, 2019.

Y. Ouyang, H. Tong, P. Luo, H. Kong, Z. Xu et al., A high throughput metabolomics method and its application in female serum samples in a normal menstrual cycle based on liquid chromatography-mass spectrometry, Talanta, vol.185, pp.483-90, 2018.

M. D. Owen, Quantitative and temporal changes in honey bee venom-a review, Toxicon, vol.21, pp.329-361, 1983.

N. Peiren, F. Vanrobaeys, D. C. De-graaf, B. Devreese, J. Van-beeumen et al., The protein composition of honeybee venom reconsidered by a proteomic approach, Biochim Biophys Acta, vol.1752, issue.1, pp.1-5, 2005.

M. W. Pennington, A. Czerwinski, and R. S. Norton, Peptide therapeutics from venom: current status and potential, Bioorg Med Chem, vol.26, issue.10, pp.2738-58, 2018.

T. Piek, Venoms of the Hymenoptera: biochemical, pharmacological and behavioural aspects, vol.583, 2013.

Q. Rome, F. J. Muller, A. Touret-alby, E. Darrouzet, A. Perrard et al., Caste differentiation and seasonal changes in Vespa velutina (Hym.: Vespidae) colonies in its introduced range, J Appl Entomol, vol.139, issue.10, pp.771-82, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01309918

C. A. Smith, E. J. Want, G. O'maille, R. Abagyan, and G. Siuzdak, XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification, Anal Chem, vol.78, issue.3, pp.779-87, 2006.

N. Sookrung, S. Wong-din-dam, A. Tungtrongchitr, O. Reamtong, N. Indrawattana et al., Proteome and allergenome of Asian wasp, Vespa affinis, venom and IgE reactivity of the venom components, J Proteome Res, vol.13, issue.3, pp.1336-1380, 2014.

E. Szyma?ska, E. Saccenti, A. K. Smilde, and J. A. Westerhuis, Doublecheck: validation of diagnostic statistics for PLS-DA models in metabolomics studies, Metabolomics, vol.8, issue.1, pp.3-16, 2012.

A. Touchard, A. Dejean, P. Escoubas, and J. Orivel, Intraspecific variations in the venom peptidome of the ant Odontomachus haematodus (Formicidae: Ponerinae) from French Guiana, J Hymenopt Res, vol.47, pp.87-101, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02634525

X. Wang, X. Zhao, L. Gu, Y. Zhang, K. Bi et al., Discrimination of aqueous and vinegary extracts of Shixiao San using metabolomics coupled with multivariate data analysis and evaluation of antihyperlipidemic effect, Asian J Pharm Sci, vol.9, issue.1, pp.17-26, 2014.

J. A. Westerhuis, H. Hoefsloot, S. Smit, D. J. Vis, A. K. Smilde et al., Assessment of PLSDA cross validation, Metabolomics, vol.4, issue.1, pp.81-90, 2008.

B. Worley and R. Powers, Multivariate analysis in metabolomics, Curr Metabolomics, vol.1, issue.1, pp.92-107, 2013.

J. Xia, N. Psychogios, N. Young, and D. S. Wishart, MetaboAnalyst: a web server for metabolomic data analysis and interpretation, Nucleic Acids Res, vol.37, pp.652-60, 2009.

H. Zheng, M. R. Clausen, T. K. Dalsgaard, G. Mortensen, and H. C. Bertram, Time-saving design of experiment protocol for optimization of LC-MS data processing in metabolomic approaches, Anal Chem, vol.85, issue.15, pp.7109-7125, 2013.

, Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations