F. Stölzel, B. Mohr, M. Kramer, U. Oelschlägel, T. Bochtler et al., Karyotype complexity and prognosis in acute myeloid leukemia, Blood Cancer J, vol.6, p.386, 2016.

B. Löwenberg, J. R. Downing, and A. Burnett, Acute myeloid leukemia, N Engl J Med, vol.341, pp.1051-62, 1999.

H. Ye, B. Adane, N. Khan, T. Sullivan, M. Minhajuddin et al., Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche, Cell Stem Cell, vol.19, pp.23-37, 2016.

R. Moschoi, V. Imbert, M. Nebout, J. Chiche, D. Mary et al., Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy, Blood, vol.128, pp.253-64, 2016.

Z. Chen, W. Lu, C. Garcia-prieto, and P. Huang, The Warburg effect and its cancer therapeutic implications, J Bioenerg Biomembr, vol.39, pp.267-74, 2007.

N. Chapuis, L. Poulain, R. Birsen, J. Tamburini, and D. Bouscary, Rationale for targeting deregulated metabolic pathways as a therapeutic strategy in acute myeloid leukemia, Front Oncol, vol.9, p.405, 2019.

W. Chen, J. Wang, A. Zhao, X. Xu, Y. Wang et al., A distinct glucose metabolism signature of acute myeloid leukemia with prognostic value, Blood, vol.124, pp.1645-54, 2014.

W. H. Koppenol, P. L. Bounds, and C. V. Dang, Otto Warburg's contributions to current concepts of cancer metabolism, Nat Rev Cancer, vol.11, pp.325-362, 2011.

M. ?krti?, S. Sriskanthadevan, B. Jhas, M. Gebbia, X. Wang et al., Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia, Cancer Cell, vol.20, pp.674-88, 2011.

S. Sriskanthadevan, D. V. Jeyaraju, T. E. Chung, S. Prabha, W. Xu et al., AML cells have low spare reserve capacity in their respiratory chain that renders them susceptible to oxidative metabolic stress, Blood, vol.125, pp.2120-2150, 2015.

I. Samudio, M. Fiegl, T. Mcqueen, K. Clise-dwyer, and M. Andreeff, The warburg effect in leukemia-stroma cocultures is mediated by mitochondrial uncoupling associated with uncoupling protein 2 activation, Cancer Res, vol.68, pp.5198-205, 2008.

F. Thuma and M. Zöller, Outsmart tumor exosomes to steal the cancer initiating cell its niche, Semin Cancer Biol, vol.28, pp.39-50, 2014.

O. Bruserud, IL-4, IL-10 and IL-13 in acute myelogenous leukemia, Cytokines Cell Mol Ther, vol.4, pp.187-98, 1998.

K. Hatfield, A. Ryningen, M. Corbascio, and O. Bruserud, Microvascular endothelial cells increase proliferation and inhibit apoptosis of native human acute myelogenous leukemia blasts, Int J Cancer, vol.119, pp.2313-2334, 2006.

A. Ryningen, L. Wergeland, N. Glenjen, B. T. Gjertsen, and Ø. Bruserud, In vitro crosstalk between fibroblasts and native human acute myelogenous leukemia (AML) blasts via local cytokine networks results in increased proliferation and decreased apoptosis of AML cells as well as increased levels of proangiogenic Interleukin 8, Leuk Res, vol.29, pp.185-96, 2005.

O. Bruserud, A. Ryningen, L. Wergeland, N. I. Glenjen, and B. T. Gjertsen, Osteoblasts increase proliferation and release of pro-angiogenic interleukin 8 by native human acute myelogenous leukemia blasts, Haematologica, vol.89, pp.391-402, 2004.

L. Desbourdes, J. Javary, T. Charbonnier, N. Ishac, J. Bourgeais et al., Alteration analysis of bone marrow mesenchymal stromal cells from de novo acute myeloid leukemia patients at diagnosis, Stem Cells Dev, vol.26, pp.709-731, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01560454

L. J. Bendall, A. Daniel, K. Kortlepel, and D. J. Gottlieb, Bone marrow adherent layers inhibit apoptosis of acute myeloid leukemia cells, Exp Hematol, vol.22, pp.1252-60, 1994.

M. Konopleva, S. Konoplev, W. Hu, A. Zaritskey, B. Afanasiev et al., Stromal cells prevent apoptosis of AML cells by upregulation of anti-apoptotic proteins, Leukemia, vol.16, pp.1713-1737, 2002.

A. Wang and H. Zhong, Roles of the bone marrow niche in hematopoiesis, leukemogenesis, and chemotherapy resistance in acute myeloid leukemia, Hematology, vol.23, pp.729-768, 2018.

O. Herault, K. J. Hope, E. Deneault, N. Mayotte, J. Chagraoui et al., A role for GPx3 in activity of normal and leukemia stem cells, J Exp Med, vol.209, pp.895-901, 2012.

E. D. Lagadinou, A. Sach, K. Callahan, R. M. Rossi, S. J. Neering et al., BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells, Cell Stem Cell, vol.12, pp.329-370, 2013.

T. Ishikawa, E. Gonzalez-nieto, D. Ghiaur, G. Dunn, S. K. Ficker et al., Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells, Proc Natl Acad Sci, vol.109, pp.9071-9077, 2012.

T. Aasen, M. Mesnil, C. C. Naus, P. D. Lampe, and D. W. Laird, Gap junctions and cancer: communicating for 50 years, Nat Rev Cancer, vol.16, pp.775-88, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01437427

M. Mesnil, Connexins and cancer, Biol Cell, vol.94, pp.493-500, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02430884

M. Kotini, E. H. Barriga, J. Leslie, M. Gentzel, V. Rauschenberger et al., Gap junction protein Connexin-43 is a direct transcriptional regulator of N-cadherin in vivo, Nat Commun, vol.9, pp.3846-63, 2018.

M. C. Weber and M. L. Tykocinski, Bone marrow stromal cell blockade of human leukemic cell differentiation, Blood, vol.83, pp.2221-2230, 1994.

S. Yi, Y. Chen, L. Wen, L. Yang, and G. Cui, Expression of connexin 32 and connexin 43 in acute myeloid leukemia and their roles in proliferation, Oncol Lett, vol.4, pp.1003-1010, 2012.

H. Reikvam, A. Ryningen, L. R. Saeterdal, I. Nepstad, and B. Foss, Bruserud Ø. Connexin expression in human acute myeloid leukemia cells: identification of patient subsets based on protein and global gene expression profiles, Int J Mol Med, vol.35, pp.645-52, 2015.

J. M. Bennett, D. Catovsky, M. T. Daniel, G. Flandrin, D. A. Galton et al., Proposals for the classification of the acute leukaemias

, Br J Haematol, vol.33, pp.451-459, 1976.

R. Rozental, M. Srinivas, and D. C. Spray, How to close a gap junction channel. Efficacies and potencies of uncoupling agents, Methods Mol Biol, vol.154, pp.447-76, 2001.

R. D. Traub, M. A. Whittington, and A. Draguhn, Gap junctions between pyramidal cells account for a variety of very fast network oscillations (>80 Hz) in cortical structures, Network Functions and Plasticity, pp.301-321, 2017.

W. Hausmann and A. L. Tarnoky, Biochemical effects of short-term treatment with carbenoxolone disodium, Br J Pharmacol Chemother, vol.26, pp.412-432, 1966.

S. Hundertmark, H. Bühler, M. Rudolf, H. K. Weitzel, and V. Ragosch, Inhibition of 11 beta-hydroxysteroid dehydrogenase activity enhances the antiproliferative effect of glucocorticosteroids on MCF-7 and ZR-75-1 breast cancer cells, J Endocrinol, vol.155, pp.171-80, 1997.

A. Trovato-salinaro, E. Trovato-salinaro, M. Failla, C. Mastruzzo, V. Tomaselli et al., Altered intercellular communication in lung fibroblast cultures from patients with idiopathic pulmonary fibrosis, Respir Res, vol.7, p.122, 2006.

Y. Yulyana, B. B. Endaya, W. H. Ng, C. M. Guo, K. M. Hui et al., Carbenoxolone enhances TRAIL -induced apoptosis through the upregulation of death receptor 5 and inhibition of gap junction intercellular communication in human glioma, Stem Cells Dev, vol.22, pp.1870-82, 2013.

K. Jensen, A. Patel, J. Klubo-gwiezdzinska, A. Bauer, and V. Vasko, Inhibition of gap junction transfer sensitizes thyroid cancer cells to anoikis, Endocr Relat Cancer, vol.18, pp.613-639, 2011.

F. Picou, C. Debeissat, J. Bourgeais, N. Gallay, E. Ferrié et al., n-3 Polyunsaturated fatty acids induce acute myeloid leukemia cell death associated with mitochondrial glycolytic switch and Nrf2 pathway activation, Pharm Res, vol.136, pp.45-55, 2018.

N. Dhanesha, A. Joharapurkar, G. Shah, S. Kshirsagar, V. Dhote et al., Inhibition of 11?-hydroxysteroid dehydrogenase 1 by carbenoxolone affects glucose homeostasis and obesity in db/ db mice, Clin Exp Pharmacol Physiol, vol.39, pp.69-77, 2012.

M. Sinyuk, A. G. Alvarado, P. Nesmiyanov, J. Shaw, E. E. Mulkearns-hubert et al., Cx25 contributes to leukemia cell communication and chemosensitivity, Oncotarget, vol.6, pp.31508-31529, 2015.

Y. Shiozawa, A. M. Havens, K. J. Pienta, and R. S. Taichman, The bone marrow niche: habitat to hematopoietic and mesenchymal stem cells and unwitting host to molecular parasites, Leukemia, vol.22, pp.941-50, 2008.

H. Li, X. Fan, and J. Houghton, Tumor microenvironment: the role of the tumor stroma in cancer, J Cell Biochem, vol.101, pp.805-820, 2007.

X. Li, Y. Xu, Q. Wang, Y. Lu, Y. Zheng et al., Leukemogenic AML1-ETO fusion protein upregulates expression of connexin 43: the role in AML 1-ETO-induced growth arrest in leukemic cells, J Cell Physiol, vol.208, pp.594-601, 2006.

F. H. Gao, Q. Wang, Y. L. Wu, X. Li, K. W. Zhao et al., c-Jun Nterminal kinase mediates AML1-ETO protein-induced connexin-43 expression, Biochem Biophys Res Commun, vol.356, pp.505-516, 2007.

Y. Liu, X. Zhang, Z. Li, and X. Chen, Up-regulation of Cx43 expression and GJIC function in acute leukemia bone marrow stromal cells post-chemotherapy, Leuk Res, vol.34, pp.631-671, 2010.

X. Zhang, Y. Liu, Y. Si, X. Chen, Z. Li et al., Effect of Cx43 gene-modified leukemic bone marrow stromal cells on the regulation of Jurkat cell line in vitro, Leuk Res, vol.36, pp.198-204, 2012.

A. Raza, A. Ghoshal, S. Chockalingam, and S. S. Ghosh, Connexin-43 enhances tumor suppressing activity of artesunate via gap junction-dependent as well as independent pathways in human breast cancer cells, Sci Rep, vol.7, p.7580, 2017.

R. A. Cairns, I. Harris, S. Mccracken, and T. W. Mak, Cancer cell metabolism, Cold Spring Harb Symp Quant Biol, vol.76, pp.299-311, 2011.

S. J. Yeung, J. Pan, and M. Lee, Roles ofp53, Myc and HIF-1 in regulating glycolysis-the seventh hallmark of cancer, Cell Mol Life Sci, vol.65, pp.3981-99, 2008.

A. Colmone, M. Amorim, A. L. Pontier, S. Wang, E. Jablonski et al., Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells, Science, vol.322, pp.1861-1866, 2008.

E. F. Mason and J. C. Rathmell, Cell metabolism: an essential link between cell growth and apoptosis, Biochim Biophys Acta, vol.1813, pp.645-54, 2011.

Z. Zeng, Y. X. Shi, T. Tsao, Y. Qiu, S. M. Kornblau et al., Targeting of mTORC1/2 by the mTOR kinase inhibitor PP242 induces apoptosis in AML cells under conditions mimicking the bone marrow microenvironment, Blood, vol.120, pp.2679-89, 2012.

H. Zhou, B. Z. Carter, and M. Andreeff, Bone marrow niche-mediated survival of leukemia stem cells in acute myeloid leukemia: Yin and Yang, Cancer Biol Med, vol.13, pp.248-59, 2016.

F. Paraguassú-braga, R. Borojevic, L. Bouzas, M. Barcinski, and A. Bonomo, Bone marrow stroma inhibits proliferation and apoptosis in leukemic cells through gap junction-mediated cell communication, Cell Death Differ, vol.10, pp.1101-1109, 2003.

R. D. Montgomery, I. H. Lawrence, D. J. Manton, K. Mendl, and P. Rowe, A controlled trial of carbenoxolone sodium capsules in the treatment of duodenal ulcer, Gut, vol.9, pp.704-710, 1968.

A. Archambault, A. Farley, D. Gosselin, F. Martin, and J. P. Birkett, Evaluation of Duogastrome (carbenoxolone sodium) for the treatment of duodenal ulcer: a multicentre study, Can Med Assoc J, vol.117, pp.1155-1164, 1977.

C. Pabst, J. Krosl, I. Fares, G. Boucher, R. Ruel et al., Identification of small molecules that support human leukemia stem cell activity ex vivo, Nat Methods, vol.11, pp.436-478, 2014.

B. Delorme and P. Charbord, Culture and characterization of human bone marrow mesenchymal stem cells, Methods Mol Med, vol.140, pp.67-81, 2007.

, Disruption of gap junctions attenuates acute myeloid leukemia chemoresistance induced by bone marrow

I. Fares, J. Chagraoui, B. Lehnertz, T. Macrae, N. Mayotte et al., EPCR expression marks UM171-expanded CD34 + cord blood stem cells, Blood, vol.129, pp.3344-51, 2017.

O. Herault, P. Colombat, J. Domenech, M. Degenne, J. L. Bremond et al., A rapid single-laser flow cytometric method for discrimination of early apoptotic cells in a heterogenous cell population, Br J Haematol, vol.104, pp.530-537, 1999.

C. Vignon, C. Debeissat, M. Georget, D. Bouscary, E. Gyan et al., Flow cytometric quantification of all phases of the cell cycle and apoptosis in a two-color fluorescence plot, PLoS ONE, vol.8, p.68425, 2013.

A. K. Kaushik, S. K. Vareed, S. Basu, V. Putluri, N. Putluri et al., Metabolomic profiling identifies biochemical pathways associated with castration-resistant prostate cancer, J Proteome Res, vol.13, pp.1088-100, 2014.