T. Abe, A Z 2 -orbifold model of the symplectic fermionic vertex operator superalgebra, Mathematische Zeitschrift, vol.255, pp.755-792, 2007.

D. Adamovic, Classification of irreducible modules of certain subalgebras of free boson vertex algebra, J. Algebra, vol.270, pp.115-132, 2003.

D. Adamovic, X. Lin, and A. Milas, ADE subalgebras of the triplet vertex algebra W(p): A-series, Commun. Contemp. Math, vol.15, p.1350028, 2013.

D. Adamovic and A. Milas, Logarithmic intertwining operators and W (2, 2p?1)-algebras, J. Math. Phys, vol.48, p.73503, 2007.

A. [am2]-d.-adamovic and . Milas, On the triplet vertex algebra W (p)

, Adv. Math, vol.217, pp.2664-2699, 2008.

D. Adamovic and A. Milas, Lattice construction of logarithmic modules for certain vertex algebras, Selecta Math. New Ser, vol.15, pp.535-561, 2009.

D. Adamovic and A. Milas, The Structure of Zhu's algebras for certain W -algebras, Adv. Math, vol.227, pp.2425-2456, 2011.

D. Adamovic and A. Milas, C 2 -cofinite W -algebras and their logarithmic representations. Conformal field theories and tensor categories, Math. Lect. Peking Univ, pp.249-270, 2014.

D. Adamovic and A. Milas, Some applications and constructions of intertwining operators in LCFT

Y. Arike and K. Nagatomo, Some remarks on pseudo-trace functions for orbifold models associated with symplectic fermions, Int. J. Math, vol.24, p.1350008, 2013.

J. Auger and M. Rupert, On infinite order simple current extensions of vertex operator algebras

N. Andruskiewitsch and C. Schweigert, On unrolled Hopf algebras

. Bbg]-a, C. Beliakova, N. Blanchet, and . Geer, Logarithmic Hennings invariants for restricted quantum sl

J. Böckenhauer, D. E. Evans, and Y. Kawahigashi, Chiral structure of modular invariants for subfactors, Commun. Math. Phys, vol.210, pp.733-784, 2000.

K. Bringmann, A. Folsom, and A. Milas, Asymptotic behavior of partial and false theta functions arising from Jacobi forms and regularized characters, J. Math. Phys, vol.58, p.11702, 2017.

D. Bücher and I. Runkel, Integrable perturbations of conformal field theories and Yetter-Drinfeld modules, J. Math. Phys, vol.55, p.111705, 2014.

I. Brunner and V. Schomerus, On superpotentials for D-branes in Gepner models, JHEP, issue.0010, p.16, 2000.

D. Bulacu and B. Torrecillas, Factorizable quasi-Hopf algebras -applications, J. Pure and Appl. Alg, vol.194, pp.39-84, 2004.

N. Carqueville and M. Flohr, Nonmeromorphic operator product expansion and C 2 -cofiniteness for a family of W-algebras, J. Phys. A, vol.39, pp.951-966, 2006.

T. Creutzig and T. Gannon, Logarithmic conformal field theory, log-modular tensor categories and modular forms, J. Phys. A, vol.50, p.404004, 2017.

F. Costantino, N. Geer, and B. Patureau-mirand, Some remarks on the unrolled quantum group of sl(2), J. Pure and Appl. Algebra, vol.219, pp.3238-3262, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00998928

T. Creutzig, S. Kanade, and A. Linshaw, Simple current extensions beyond semi-simplicity

T. Creutzig, S. Kanade, A. R. Linshaw, and D. Ridout, Schur-Weyl Duality for Heisenberg Cosets

T. Creutzig, S. Kanade, and R. Mcrae, Tensor categories for vertex operator superalgebra extensions

T. Creutzig and A. Milas, False Theta Functions and the Verlinde formula, Adv. Math, vol.262, pp.520-545, 2014.

T. Creutzig and A. Milas, Higher rank partial and false theta functions and representation theory, Adv. Math, vol.314, pp.203-227, 2017.

T. Creutzig, A. Milas, and M. Rupert, Logarithmic Link Invariants of U H q (sl 2 ) and Asymptotic Dimensions of Singlet Vertex Algebras

T. Creutzig, A. Milas, and S. Wood, On Regularised Quantum Dimensions of the Singlet Vertex Operator Algebra and False Theta Functions, Int. Math. Res. Not, pp.1390-1432, 2017.

S. Carnahan and M. Miyamoto, Regularity of fixed-point vertex operator algebras

V. Chari and A. Pressley, A guide to quantum groups, CUP, 1994.

T. Creutzig and D. Ridout, Logarithmic Conformal Field Theory: Beyond an Introduction, J. Phys. A, vol.46, p.494006, 2013.

N. Carqueville and I. Runkel, Orbifold completion of defect bicategories, Quantum Topol, vol.7, pp.203-279, 2016.

T. Creutzig, D. Ridout, and S. Wood, Coset Constructions of Logarithmic (1, p) Models, Lett. Math. Phys, vol.104, pp.553-583, 2014.

M. De-renzi, N. Geer, and B. Patureau-mirand, Renormalized Hennings Invariants and 2+1-TQFTs
URL : https://hal.archives-ouvertes.fr/hal-01680395

C. Dong and J. Lepowsky, Generalized Vertex Algebras and Relative Vertex Operators, Progress in Mathematics, vol.112, 1993.

C. Dong, H. Li, and G. Mason, Simple currents and extensions of vertex operator algebras, Commun. Math. Phys, vol.180, pp.671-707, 1996.

C. Dong, Vertex algebras associated with even lattices, J. Algebra, vol.160, pp.245-265, 1993.

A. Davydov and I. Runkel, Z/2Z-extensions of Hopf algebra module categories by their base categories, Adv. Math, vol.247, pp.192-265, 2013.

P. I. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik, Tensor categories, Math. Surveys Monographs 205, 2015.

S. Eilenberg and S. M. Lane, II: Methods of Computation, On the groups H(?, n), vol.60, pp.49-137, 1954.

E. Frenkel and D. Ben-zvi, Vertex Algebras and Algebraic Curves, vol.88, 2001.

J. Fjelstad, J. Fuchs, S. Hwang, A. M. Semikhatov, I. Yu et al., Logarithmic Conformal Field Theories via Logarithmic Deformations, Nucl. Phys, vol.633, pp.379-413, 2002.

V. Farsad, A. M. Gainutdinov, and I. Runkel, SL(2, Z) action for ribbon quasi-Hopf algebras
URL : https://hal.archives-ouvertes.fr/hal-02148033

V. Farsad, A. M. Gainutdinov, and I. Runkel, The symplectic fermion ribbon quasi-Hopf algebra and the SL(2, Z)-action on its centre

J. Fuchs, M. R. Gaberdiel, I. Runkel, and C. Schweigert, Topological defects for the free boson CFT, J. Phys. A, vol.40, p.11403, 2007.

B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, and I. Y. Tipunin, Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center, Commun. Math. Phys, vol.265, pp.47-93, 2006.

B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, and I. Y. Tipunin, Kazhdan-Lusztig correspondence for the representation category of the triplet W-algebra in logarithmic conformal field theory, Theor. Math. Phys, vol.148, pp.1210-1235, 2006.

B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov, and I. Y. Tipunin, Logarithmic extensions of minimal models: characters and modular transformations, Nucl. Phys. B, vol.757, pp.303-343, 2006.

I. B. Frenkel, Y. Huang, and J. Lepowsky, On Axiomatic Approaches to Vertex Operator Algebras and Modules, Memoirs of the AMS, vol.494, 1993.

J. Fuchs, S. Hwang, A. M. Semikhatov, and I. Y. Tipunin, Nonsemisimple fusion algebras and the Verlinde formula, Commun. Math. Phys, vol.247, pp.713-742, 2004.

J. Fjelstad, J. Fuchs, I. Runkel, and C. Schweigert, Topological and conformal field theory as Frobenius algebras, Contemp. Math, vol.431, pp.225-248, 2007.

M. A. Flohr, On modular invariant partition functions of conformal field theories with logarithmic operators, Int. J. Mod. Phys. A, vol.11, pp.4147-4172, 1996.

I. Flandoli and S. D. Lentner, Logarithmic conformal field theories of type B n , ? = 4 and symplectic fermions

J. Fröhlich, J. Fuchs, I. Runkel, and C. Schweigert, Correspondences of ribbon categories, Adv. Math, vol.199, pp.192-329, 2006.

J. Fuchs, I. Runkel, and C. Schweigert, TFT construction of RCFT correlators. I: Partition functions, Nucl. Phys. B, vol.646, pp.353-497, 2002.

J. Fuchs, I. Runkel, and C. Schweigert, TFT construction of RCFT correlators. III: Simple currents, Nucl. Phys. B, vol.694, pp.277-353, 2004.

J. Fuchs and C. Schweigert, Category theory for conformal boundary conditions, Fields Inst. Comm, vol.39, pp.25-70, 2003.

J. Fuchs and C. Schweigert, Consistent systems of correlators in non-semisimple conformal field theory, Adv. Math, vol.307, pp.598-639, 2017.

B. Feigin and I. Tipunin, Logarithmic CFTs connected with simple Lie algebras

J. Fuchs, On non-semisimple fusion rules and tensor categories, Contemp. Math, vol.442, pp.315-337, 2007.

M. R. Gaberdiel and I. Runkel, From boundary to bulk in logarithmic CFT, J. Phys. A, vol.41, p.75402, 2008.

M. R. Gaberdiel and H. G. Kausch, Indecomposable fusion products, Nucl. Phys. B, vol.477, pp.293-318, 1996.

M. R. Gaberdiel and H. G. Kausch, A rational logarithmic conformal field theory, Phys. Lett. B, vol.386, pp.131-137, 1996.

A. M. Gainutdinov, S. D. Lentner, and T. Ohrmann,

A. M. Gainutdinov and I. Runkel, Symplectic fermions and a quasi-Hopf algebra structure on U i s?(2), J. Algebra, pp.415-458, 2017.

A. M. Gainutdinov and I. Runkel, The non-semisimple Verlinde formula and pseudo-trace functions
URL : https://hal.archives-ouvertes.fr/hal-02144358

A. M. Gainutdinov and I. Runkel, Projective objects and the modified trace in factorisable finite tensor categories

N. Geer and B. Patureau-mirand, The trace on projective representations of quantum groups
URL : https://hal.archives-ouvertes.fr/hal-01389986

]. N. Gpt, B. Geer, V. Patureau-mirand, and . Turaev, Modified quantum dimensions and re-normalized link invariants, Compositio Math, vol.145, pp.196-212, 2009.

[. Huang, A. Kirillov, and J. Lepowsky, Braided tensor categories and extensions of vertex operator algebras, Commun. Math. Phys, vol.337, pp.1143-1159, 2015.

Y. Huang, J. Lepowsky, and L. Zhang, Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, Parts I-VIII, Part I published in Conformal Field Theories and Tensor Categories, pp.169-248, 1012.

Y. Huang, Vertex operator algebras and the Verlinde conjecture, Commun. Contemp. Math, vol.10, pp.103-154, 2008.

Y. Huang, Rigidity and modularity of vertex tensor categories, Commun. Contemp. Math, vol.10, pp.871-911, 2008.

Y. Huang, Cofiniteness conditions, projective covers and the logarithmic tensor product theory, J. Pure Appl. Algebra, vol.213, pp.458-475, 2009.

K. A. Intriligator, Bonus Symmetry in Conformal Field Theory, Nucl. Phys. B, vol.332, pp.541-565, 1990.

A. Joyal and R. Street, Braided tensor categories, Adv. Math, vol.102, pp.20-78, 1993.

H. G. Kausch, Extended conformal algebras generated by a multiplet of primary fields, Phys. Lett. B, vol.259, pp.448-455, 1991.

H. G. Kausch, Curiosities at c = ?2

C. Kassel, Quantum groups, 1995.
URL : https://hal.archives-ouvertes.fr/hal-00124690

A. A. Kirillov and V. Ostrik, On q-analog of McKay correspondence and ADE classification of sl(2) conformal field theories, Adv. Math, vol.171, pp.183-227, 2002.

S. Kanade and D. Ridout,

H. Kondo and Y. Saito, Indecomposable decomposition of tensor products of modules over the restricted quantum universal enveloping algebra associated to sl(2), J. Algebra, vol.330, pp.103-129, 2011.

P. P. Kulish and E. K. Sklyanin, The general U q [sl(2)] invariant XXZ integrable quantum spin chain, J. Phys. A, vol.24, pp.435-439, 1991.

S. D. Lentner, The unrolled quantum group inside Lusztig's quantum group of divided powers

S. D. Lentner, Quantum groups and Nichols algebras acting on conformal field theories

H. Li, Symmetric invariant bilinear forms on vertex operator algebras, J. Pure Appl. Algebra, vol.96, pp.279-297, 1994.

S. D. Lentner, S. N. Mierach, C. Schweigert, and Y. Sommerhäuser, Hochschild Cohomology and the Modular Group

J. Lepowsky and R. L. Wilson, A Lie theoretic interpretation and proof of the Rogers-Ramanujan identities, Adv. Math, vol.45, pp.21-72, 1982.

V. V. Lyubashenko, Modular transformations for tensor categories, J. Pure Appl. Algebra, vol.9, pp.279-327, 1995.

V. V. Lyubashenko, Invariants of three manifolds and projective representations of mapping class groups via quantum groups at roots of unity, Commun. Math. Phys, vol.172, pp.467-516, 1995.

J. Murakami and K. Nagatomo, Logarithmic knot invariants arising from restricted quantum groups, Int. J. Math, vol.19, pp.1203-1213, 2008.

G. W. Moore and N. Seiberg, Classical and Quantum Conformal Field Theory, vol.123, pp.177-254, 1989.

J. Murakami, From colored Jones invariants to logarithmic invariants

W. Nahm, On quasi-rational conformal field theories, Nucl. Phys. Proc. Suppl, vol.49, pp.107-114, 1996.

K. Nagatomo and A. Tsuchiya, The triplet vertex operator algebra W (p) and the restricted quantum group at root of unity, Adv. Studies in Pure Math, vol.61, 2011.

T. Ohtsuki, Quantum invariants. A study of knots, 3-manifolds, and their sets, Series on Knots and Everything, vol.29, 2001.

V. Ostrik, Module categories, weak Hopf algebras and modular invariants, Transform. Groups, vol.8, pp.177-206, 2003.

B. Pareigis, On Braiding and Dyslexia, J. Algebra, vol.171, pp.413-425, 1995.

I. Runkel, A braided monoidal category for free super-bosons, J. Math. Phys, vol.55, p.41702, 2014.

D. Ridout and S. Wood, Modular transformations and Verlinde formulae for logarithmic (p + , p ? )-models, Nucl. Phys. B, vol.880, pp.175-202

S. [rw2]-d.-ridout and . Wood, The Verlinde formula in logarithmic CFT, J. Phys. Conf. Ser, vol.597, p.12065, 2015.

N. R. Scheithauer, The fake monster superalgebra, Adv. Math, vol.151, pp.226-269, 2000.

K. Shimizu, Non-degeneracy conditions for braided finite tensor categories

M. C. Shum and ;. Sommerhäuser, On the notion of a ribbon quasi-Hopf algebra, Revista de la Unión Mat, J. Pure Appl. Algebra, vol.93, pp.177-192, 1994.

. M. St]-a, I. Semikhatov, . Yu, and . Tipunin, The Nichols algebra of screenings, Commun. Contemp. Math, vol.14, p.1250029, 2012.

A. N. Schellekens and S. Yankielowicz, Extended Chiral Algebras and Modular Invariant Partition Functions, Nucl. Phys. B, vol.327, pp.673-703, 1989.

A. N. Schellekens and S. Yankielowicz, Simple Currents, Modular Invariants and Fixed Points, Int. J. Mod. Phys. A, vol.5, pp.2903-2952, 1990.

K. Tanabe, Simple weak modules for some subalgebras of the Heisenberg vertex algebra and Whittaker vectors

A. Tsuchiya and S. Wood, The tensor structure on the representation category of the W p triplet algebra, J. Phys, vol.46, p.445203, 2013.

E. P. Verlinde, Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys. B, vol.300, pp.360-376, 1988.

H. Yamauchi, Module categories of simple current extensions of vertex operator algebras, J. Pure Appl. Algebra, vol.189, pp.315-328, 2004.

J. Xiao, Finite dimensional representations of U t (sl(2)) at root of unity, Canad. J. Math, vol.49, pp.772-787, 1997.