J. W. Fergus, Oxide materials for high temperature thermoelectric energy conversion, J. Eur. Ceram. Soc, vol.32, pp.525-540, 2012.

R. Löhnert, M. Stelter, and J. Töpfer, Evaluation of soft chemistry methods to synthesize Gd-doped CaMnO 3-d with improved thermoelectric properties, Mater. Sci. Eng., B, vol.223, pp.185-193, 2017.

S. Funahashi, H. Guo, J. Guo, A. L. Baker, K. Wang et al., Cold sintering and co-firing of a multilayer device with thermoelectric materials, J. Am. Ceram. Soc, vol.100, pp.3488-3496, 2017.

F. Delorme, C. F. Martin, P. Marudhachalam, G. Guzman, D. O. Ovono et al., Synthesis of thermoelectric Ca 3 Co 4 O 9 ceramics with high ZT values from a Co II Co IIIlayered double hydroxide precursor, Mater. Res. Bull, vol.47, pp.3287-3291, 2012.

K. Koumoto, R. Funahashi, E. Guilmeau, Y. Miyazaki, A. Weidenkaff et al., Thermoelectric ceramics for energy harvesting, J. Am. Ceram. Soc, vol.96, pp.1-23, 2013.
DOI : 10.1111/jace.12076

S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, High-temperature carrier transport and thermoelectric properties of heavily La-or Nb-doped SrTiO 3 single crystals, J. Appl. Phys, vol.97, p.34106, 2005.

R. Moos, A. Gnudi, and K. H. Härdtl, Thermopower of Sr 1-x La x TiO 3 ceramics, J. Appl. Phys, vol.78, pp.5042-5047, 1995.

K. Park, K. Y. Ko, W. S. Seo, W. S. Cho, J. G. Kim et al., High-temperature thermoelectric properties of polycrystalline Zn 1-x-y Al x Ti y O ceramics, J. Eur. Ceram. Soc, vol.27, pp.813-817, 2007.

M. Ohtaki, K. Araki, and K. Yamamoto, High thermoelectric performance of dually doped ZnO ceramics, J. Electron. Mater, vol.38, pp.1234-1238, 2009.

E. Guilmeau, P. Díaz-chao, O. I. Lebedev, A. Re?nik, M. C. Schäfer et al., Inversion boundaries and phonon scattering in Ga:ZnO thermoelectric compounds, Inorg. Chem, vol.56, pp.480-487, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01741077

M. Ohtaki, H. Koga, T. Tokunaga, K. Eguchi, H. ;. Arai et al., Electrical transport properties and high-temperature thermoelectric performance of, Ca 0.9 M 0.1 )MnO, vol.3, pp.105-111, 1995.

H. Taguchi, High-temperature phase transition of CaMnO 3-d, J. Solid State Chem, vol.78, pp.312-3115, 1989.

A. Bhaskar, C. Liu, and J. J. Yuan, Thermoelectric and magnetic properties of Ca 0.98 RE 0.02 MnO 3-d (RE = Sm, Gd, and Dy), J. Electron. Mater, vol.41, pp.2338-2344, 2012.

R. Kabir, D. Wang, T. Zhang, R. Tian, R. Donelson et al., Tunable thermoelectric properties of Ca 0.9 Yb 0.1 MnO 3 through controlling the particle size via ball mill processing, Ceram. Int, vol.40, pp.16701-16706, 2014.

P. Thiel, J. Eilertsen, S. Populoh, G. Saucke, M. Döbeli et al., Influence of tungsten substitution and oxygen deficiency on the thermoelectric properties of CaMnO 3-d, J. Appl. Phys, vol.114, p.243707, 2013.

D. Srivastava, F. Azough, R. Freer, E. Combe, R. Funahashi et al., Crystal structure and thermoelectric properties of Sr-Mo substituted CaMnO 3 : A combined experimental and computational study, J. Mater. Chem. C, vol.3, pp.12245-12259, 2015.

T. Reimann and J. Töpfer, Thermoelectric properties of Gd/W double substituted calcium manganite, J. Alloy. Compd, vol.699, pp.788-795, 2017.

C. S. Sanmathi, Y. Takahashi, D. Sawaki, Y. Klein, R. Retoux et al., Microstructure control on thermoelectric properties of Ca 0.96 Sm 0.04 MnO 3 synthesised by coprecipitation technique, Mater. Res. Bull, vol.45, pp.558-563, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02150168

S. B. Lemonnier, C. Goupil, J. Noudem, and E. Guilmeau, Fourleg Ca 0.95 Sm 0.05 MnO 3 unileg thermoelectric device, J. Appl. Phys, vol.104, p.14505, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02149870

H. Su, Y. Jiang, X. Lan, X. Liu, H. Zhong et al., Ca 3-x Bi x Co 4 O 9 and Ca 1-y Sm y MnO 3 thermoelectric materials and their power-generation devices, Phys. Status Solidi, vol.208, pp.147-155, 2011.

I. Matsubara, R. Funahashi, T. Takeuchi, S. Sodeoka, T. Shimizu et al., Fabrication of an all-oxide thermoelectric power generator, Appl. Phys. Lett, vol.78, 2001.

K. Koumoto, Y. Wang, R. Zhang, A. Kosuga, and R. Funahashi, Oxide thermoelectric Materials: A nanostructuring approach, Annu. Rev. Mater. Res, vol.40, pp.363-394, 2010.

T. Reimann, A. Bochmann, A. Vogel, B. Capraro, S. Teichert et al., Fabrication of a transversal multilayer thermoelectric generator with substituted calcium manganite, J. Am. Ceram. Soc, 2017.

, Thermoelectric Properties of Sm-doped Calcium Manganate CaMnO, vol.3, p.299

S. Teichert, A. Bochmann, T. Reimann, T. Schulz, C. Dressler et al., A monolithic oxide-based transversal thermoelectric energy harvester, J. Electron. Mater, vol.45, 1966.

D. Segal, Chemical synthesis of ceramic materials, J. Mater. Chem, vol.7, pp.1297-1305, 1997.

B. Jaffe, Piezoelectric Ceramics, 2012.

S. Lemonnier, E. Guilmeau, C. Goupil, R. Funahashi, and J. G. Noudem, Thermoelectric properties of layered Ca 3.95 RE 0.05 Mn 3 O 10 compounds (RE=Ce, Ceram. Int, vol.36, pp.887-891, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02150161

J. G. Noudem, S. Lemonnier, M. Prevel, E. S. Reddy, E. Guilmeau et al., Thermoelectric ceramics for generators, J. Eur. Ceram. Soc, vol.28, pp.41-48, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02149878

V. Berbenni, C. Milanese, G. Bruni, P. Cofrancesco, and A. Marini, Solid state synthesis of CaMnO 3 from CaCO 3-MnCO 3 mixtures by mechanical energy, Z. Naturforsch. B, vol.61, 2006.

G. Xu, R. Funahashi, Q. Pu, B. Liu, R. Tao et al., High-temperature transport properties of Nb and Ta substituted CaMnO 3 system, Solid State Ionics, vol.171, pp.147-151, 2004.

S. Bresch, B. Mieller, C. Selleng, T. Stöcker, R. Moos et al., Influence of the calcination procedure on the thermoelectric properties of calcium cobaltite Ca 3 Co 4 O 9, J. Electroceram, 2018.

M. Campari and S. Garribba, The behavior of type K thermocouples in temperature Measurement: the chromel P-Alumel thermocouples, Rev. Sci. Instrum, vol.42, pp.644-653, 1971.

T. Stöcker, J. Exner, M. Schubert, M. Streibl, and R. Moos, Influence of oxygen partial pressure during processing on the thermoelectric properties of aerosol-deposited CuFeO 2 , Materials, vol.9, 2016.

T. Duval and C. Duval, About the gravimetry analysis of precipitates: dosing of samarium, in french, Anal. Chim. Acta, vol.2, pp.228-229, 1948.

A. I. Sabry, A. M. Mahdy, and M. F. Abadir, Thermal decomposition of MnCO 3 (in air), Thermochim. Acta, vol.98, pp.269-276, 1986.

J. Dean, Lange's handbook of chemistry, 1999.

F. Rettig and R. Moos, Morphology dependence of thermopower and conductance in semiconducting oxides with space charge regions, Solid State Ionics, vol.179, pp.2299-2307, 2008.

P. Gerthsen, K. H. Härdtl, and A. Csillag, Mobility determinations from weight measurements in solid solutions of, Phys. Status Solidi, vol.3, pp.127-133, 1972.

F. Rettig and R. Moos, Direct thermoelectric gas sensors: design aspects and first gas sensors, Sensor. Actuat., B, vol.123, pp.413-419, 2007.

R. Moos, M. Fandel, and W. Schäfer, High-load resistors of doped titanate ceramics showing PTCR behavior in the entire temperature range of operation, J. Eur. Ceram. Soc, vol.19, pp.759-763, 1999.

H. Salmang, R. Telle, and H. Scholze, Ceramics) Keramik, pp.376-377, 2006.

W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, pp.449-452, 1976.

Y. Liou, L. Chang, Y. Lu, H. Tsai, and U. Lee, Effects of mechanical milling on preparation and properties of CuAl 1-x Fe x O 2 thermoelectric ceramics, Ceram. Int, vol.38, pp.3619-3624, 2012.

Y. Zhu, C. Wang, W. Su, J. Li, J. Liu et al., High-temperature thermoelectric performance of Ca 0.96 Dy 0.02 RE 0.02 MnO 3 ceramics (RE=Ho, er, Tm), Ceram. Int, vol.40, pp.15531-15536, 2014.

L. Bocher, M. H. Aguirre, D. Logvinovich, A. Shkabko, R. Robert et al., CaMn 1-x Nb x O 3 (x ? 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials, Inorg. Chem, vol.47, pp.8077-8085, 2008.

K. E. Ledezma, The relation between microstructure and thermoelectric properties in Ta-substituted A-site deficient CaMnO 3, 2017.

Y. Wang, Y. Sui, J. Cheng, X. Wang, Z. Lu et al., High temperature Metal-Insulator transition induced by rareearth doping in perovskite CaMnO 3, J. Phys. Chem. C, vol.113, pp.12509-12516, 2009.