L. A. Torre, R. L. Siegel, E. M. Ward, J. , and A. , Global Cancer Incidence and Mortality Rates and Trends--An Update, Cancer Epidemiol Biomarkers Prev, vol.25, pp.16-27, 2016.

J. A. Mccubrey, D. Rakus, A. Gizak, L. S. Steelman, S. L. Abrams et al., Effects of mutations in Wnt/beta-catenin, hedgehog, Notch and PI3K pathways on GSK-3 activity-Diverse effects on cell growth, metabolism and cancer, Biochim Biophys Acta, vol.1863, pp.2942-2976, 2016.

A. Patel, H. Sabbineni, A. Clarke, and P. R. Somanath, Novel roles of Src in cancer cell epithelial-to-mesenchymal transition, vascular permeability, microinvasion and metastasis, Life Sci, vol.157, pp.52-61, 2016.

T. Zhan, N. Rindtorff, and M. Boutros, Wnt signaling in cancer, Oncogene, vol.5, 2016.

G. A. Hobbs, C. J. Der, and K. L. Rossman, RAS isoforms and mutations in cancer at a glance, J Cell Sci, vol.129, pp.1287-1292, 2016.

H. Land, L. F. Parada, and R. A. Weinberg, Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes, Nature, vol.304, pp.596-602, 1983.

A. G. Knudson and . Jr, Mutation and cancer: statistical study of retinoblastoma, Proc Natl Acad Sci U S A, vol.68, pp.820-823, 1971.

S. J. Baker, S. Markowitz, E. R. Fearon, J. K. Willson, and B. Vogelstein, Suppression of human colorectal carcinoma cell growth by wild-type p53, Science, vol.249, pp.912-915, 1990.

N. J. Dyson, RB1: a prototype tumor suppressor and an enigma, Genes & development, vol.30, pp.1492-1502, 2016.

Z. Kleibl and V. N. Kristensen, Women at high risk of breast cancer: Molecular characteristics, clinical presentation and management, Breast, vol.28, pp.136-144, 2016.

D. Hanahan and R. A. Weinberg, The hallmarks of cancer, Cell, vol.100, pp.57-70, 2000.

I. J. Fidler, Understanding bone metastases: the key to the effective treatment of prostate cancer, Clinical advances in hematology & oncology : H&O, vol.1, pp.278-279, 2003.

G. P. Gupta and J. Massague, Cancer metastasis: building a framework, Cell, vol.127, pp.679-695, 2006.

D. M. Parkin, F. Bray, J. Ferlay, and P. Pisani, Global cancer statistics, CA Cancer J Clin, vol.55, pp.74-108, 2002.

P. Friedl, A. , and S. , Cancer invasion and the microenvironment: plasticity and reciprocity, Cell, vol.147, pp.992-1009, 2011.

P. Friedl, J. Locker, E. Sahai, and J. E. Segall, Classifying collective cancer cell invasion, Nat Cell Biol, vol.14, pp.777-783, 2012.

J. Yang and R. A. Weinberg, Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis, Dev Cell, vol.14, pp.818-829, 2008.

K. Glunde, S. E. Guggino, M. Solaiyappan, A. P. Pathak, Y. Ichikawa et al., Extracellular acidification alters lysosomal trafficking in human breast cancer cells, Neoplasia, vol.5, pp.533-545, 2003.

K. Wolf and P. Friedl, Extracellular matrix determinants of proteolytic and non-proteolytic cell migration, Trends Cell Biol, vol.21, pp.736-744, 2011.

V. Sanz-moreno, G. Gadea, J. Ahn, H. Paterson, P. Marra et al., Rac activation and inactivation control plasticity of tumor cell movement, Cell, vol.135, pp.510-523, 2008.

E. Sahai and C. J. Marshall, Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis, Nat Cell Biol, vol.5, pp.711-719, 2003.

J. B. Wyckoff, S. E. Pinner, S. Gschmeissner, J. S. Condeelis, and E. Sahai, ROCK-and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo, Curr Biol, vol.16, pp.1515-1523, 2006.

P. Friedl and K. Wolf, Tumour-cell invasion and migration: diversity and escape mechanisms, Nat Rev Cancer, vol.3, pp.362-374, 2003.

K. Wolf, I. Mazo, H. Leung, K. Engelke, U. H. Von-andrian et al., Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis, J Cell Biol, vol.160, pp.267-277, 2003.

T. T. Lah, M. B. Duran-alonso, and C. J. Van-noorden, Antiprotease therapy in cancer: hot or not?, Expert opinion on biological therapy, vol.6, pp.257-279, 2006.

M. Bergert, S. D. Chandradoss, R. A. Desai, and E. Paluch, Cell mechanics control rapid transitions between blebs and lamellipodia during migration, Proc Natl Acad Sci U S A, vol.109, pp.14434-14439, 2012.

E. Bon, V. Driffort, F. Gradek, C. Martinez-caceres, M. Anchelin et al., SCN4B acts as a metastasis-suppressor gene preventing hyperactivation of cell migration in breast cancer, Nature communications, vol.7, p.13648, 2016.

X. Zheng, J. L. Carstens, J. Kim, M. Scheible, J. Kaye et al., Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer, Nature, vol.527, pp.525-530, 2015.

K. R. Fischer, A. Durrans, S. Lee, J. Sheng, F. Li et al., Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance, Nature, vol.527, pp.472-476, 2015.

J. Penkert, T. Ripperger, M. Schieck, B. Schlegelberger, D. Steinemann et al., On metabolic reprogramming and tumor biology: A comprehensive survey of metabolism in breast cancer, Oncotarget, vol.47, 2016.

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: the next generation, Cell, vol.144, pp.646-674, 2011.

B. A. Webb, M. Chimenti, M. P. Jacobson, and D. L. Barber, Dysregulated pH: a perfect storm for cancer progression, Nat Rev Cancer, vol.11, pp.671-677, 2011.

O. Warburg, On the origin of cancer cells, Science, vol.123, pp.309-314, 1956.

R. A. Gatenby and R. J. Gillies, Why do cancers have high aerobic glycolysis?, Nat Rev Cancer, vol.4, pp.891-899, 2004.

R. J. Shaw, Glucose metabolism and cancer, Curr Opin Cell Biol, vol.18, pp.598-608, 2006.

S. S. Gambhir, Molecular imaging of cancer with positron emission tomography, Nat Rev Cancer, vol.2, pp.683-693, 2002.

O. Warburg, On respiratory impairment in cancer cells, Science, vol.124, pp.269-270, 1956.

S. Pavlides, D. Whitaker-menezes, R. Castello-cros, N. Flomenberg, A. K. Witkiewicz et al., The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma, Cell Cycle, vol.8, pp.3984-4001, 2009.

F. Sotgia, U. E. Martinez-outschoorn, and M. P. Lisanti, The reverse Warburg effect in osteosarcoma, Oncotarget, vol.5, pp.7982-7983, 2014.

K. M. Nieman, H. A. Kenny, C. V. Penicka, A. Ladanyi, R. Buell-gutbrod et al., Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth, Nat Med, vol.17, pp.1498-1503, 2011.

P. Sonveaux, F. Vegran, T. Schroeder, M. C. Wergin, J. Verrax et al., Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice, J Clin Invest, vol.118, pp.3930-3942, 2008.

F. Guillaumond, J. Leca, O. Olivares, M. N. Lavaut, N. Vidal et al., Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma, Proc Natl Acad Sci U S A, vol.110, pp.3919-3924, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01460466

A. S. Tan, J. W. Baty, L. F. Dong, A. Bezawork-geleta, B. Endaya et al., Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA, Cell metabolism, vol.21, pp.81-94, 2015.

V. S. Lebleu, J. T. O'connell, K. N. Gonzalez-herrera, H. Wikman, K. Pantel et al., PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis, Nat Cell Biol, vol.16, pp.1001-1015, 2014.

E. I. Chen, J. Hewel, J. S. Krueger, C. Tiraby, M. R. Weber et al., Adaptation of energy metabolism in breast cancer brain metastases, Cancer Res, vol.67, pp.1472-1486, 2007.

A. F. Santidrian, A. Matsuno-yagi, M. Ritland, B. B. Seo, S. E. Leboeuf et al., Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression, J Clin Invest, vol.123, pp.1068-1081, 2013.

X. J. Han, Z. J. Yang, L. P. Jiang, Y. F. Wei, M. F. Liao et al., Mitochondrial dynamics regulates hypoxia-induced migration and antineoplastic activity of cisplatin in breast cancer cells, Int J Oncol, vol.46, pp.691-700, 2015.

T. F. Che, C. W. Lin, Y. Y. Wu, Y. J. Chen, C. L. Han et al., Mitochondrial translocation of EGFR regulates mitochondria dynamics and promotes metastasis in NSCLC, Oncotarget, vol.6, pp.37349-37366, 2015.

D. Han, E. Williams, and E. Cadenas, Mitochondrial respiratory chaindependent generation of superoxide anion and its release into the intermembrane space, Biochem J, vol.353, pp.411-416, 2001.

E. Cadenas and K. J. Davies, Mitochondrial free radical generation, oxidative stress, and aging, Free Radic Biol Med, vol.29, pp.222-230, 2000.

W. Y. Hung, K. H. Huang, C. W. Wu, C. W. Chi, H. L. Kao et al., Mitochondrial dysfunction promotes cell migration via reactive oxygen species-enhanced beta5-integrin expression in human gastric cancer SC-M1 cells, Biochim Biophys Acta, vol.1820, pp.1102-1110, 2012.

K. Ishikawa, K. Takenaga, M. Akimoto, N. Koshikawa, A. Yamaguchi et al., ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis, Science, vol.320, pp.661-664, 2008.

J. Goh, L. Enns, S. Fatemie, H. Hopkins, J. Morton et al., Mitochondrial targeted catalase suppresses invasive breast cancer in mice, BMC Cancer, vol.11, p.191, 2011.

P. E. Porporato, V. L. Payen, J. Perez-escuredo, C. J. De-saedeleer, P. Danhier et al., A mitochondrial switch promotes tumor metastasis, Cell reports, vol.8, pp.754-766, 2014.

G. Bonuccelli, A. Tsirigos, D. Whitaker-menezes, S. Pavlides, R. G. Pestell et al., Ketones and lactate "fuel" tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism, Cell Cycle, vol.9, pp.3506-3514, 2010.

S. Pavlides, I. Vera, R. Gandara, S. Sneddon, R. G. Pestell et al., Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis, Antioxidants & redox signaling, vol.16, pp.1264-1284, 2012.

F. Sotgia, D. Whitaker-menezes, U. E. Martinez-outschoorn, N. Flomenberg, R. C. Birbe et al., Mitochondrial metabolism in cancer metastasis: visualizing tumor cell mitochondria and the "reverse Warburg effect" in positive lymph node tissue, Cell Cycle, vol.11, pp.1445-1454, 2012.

A. B. Alvero, M. K. Montagna, J. C. Holmberg, V. Craveiro, D. Brown et al., Targeting the mitochondria activates two independent cell death pathways in ovarian cancer stem cells, Mol Cancer Ther, vol.10, pp.1385-1393, 2011.

Y. Zhou, F. Tozzi, J. Chen, F. Fan, L. Xia et al., , 2012.

D. Y. Alakhova, N. Y. Rapoport, E. V. Batrakova, A. A. Timoshin, S. Li et al., Differential metabolic responses to pluronic in MDR and non-MDR cells: a novel pathway for chemosensitization of drug resistant cancers, Journal of controlled release : official journal of the Controlled Release Society, vol.142, pp.89-100, 2010.

C. R. Oliva, D. R. Moellering, G. Y. Gillespie, and C. E. Griguer, Acquisition of chemoresistance in gliomas is associated with increased mitochondrial coupling and decreased ROS production, PLoS One, vol.6, p.24665, 2011.

M. E. Harper, A. Antoniou, E. Villalobos-menuey, A. Russo, R. Trauger et al., Characterization of a novel metabolic strategy used by drug-resistant tumor cells, FASEB J, vol.16, pp.1550-1557, 2002.

A. Negre-salvayre, C. Hirtz, G. Carrera, R. Cazenave, M. Troly et al., A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation, FASEB J, vol.11, pp.809-815, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00393579

N. Parker, A. Vidal-puig, and M. D. Brand, Stimulation of mitochondrial proton conductance by hydroxynonenal requires a high membrane potential, Biosci Rep, vol.28, pp.83-88, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00479295

J. Diao, E. M. Allister, V. Koshkin, S. C. Lee, A. Bhattacharjee et al., UCP2 is highly expressed in pancreatic alpha-cells and influences secretion and survival, Proc Natl Acad Sci U S A, vol.105, pp.12057-12062, 2008.

R. J. Mailloux, C. N. Adjeitey, and M. E. Harper, Genipin-induced inhibition of uncoupling protein-2 sensitizes drug-resistant cancer cells to cytotoxic agents, PLoS One, vol.5, p.13289, 2010.

D. G. Pons, M. Nadal-serrano, M. Torrens-mas, A. Valle, J. Oliver et al., UCP2 inhibition sensitizes breast cancer cells to therapeutic agents by increasing oxidative stress, Free Radic Biol Med, vol.86, pp.67-77, 2015.

E. Dalla-pozza, C. Fiorini, I. Dando, M. Menegazzi, A. Sgarbossa et al., Role of mitochondrial uncoupling protein 2 in cancer cell resistance to gemcitabine, Biochim Biophys Acta, vol.1823, pp.1856-1863, 2012.

I. S. Okon, K. A. Coughlan, M. Zhang, Q. Wang, and M. H. Zou, Gefitinibmediated reactive oxygen specie (ROS) instigates mitochondrial dysfunction and drug resistance in lung cancer cells, J Biol Chem, vol.290, pp.9101-9110, 2015.

L. Farrand, S. Byun, J. Y. Kim, A. Im-aram, J. Lee et al., Piceatannol enhances cisplatin sensitivity in ovarian cancer via modulation of p53, X-linked inhibitor of apoptosis protein (XIAP), and mitochondrial fission, J Biol Chem, vol.288, pp.23740-23750, 2013.

G. Santin, V. M. Piccolini, S. Barni, P. Veneroni, V. Giansanti et al., Mitochondrial fusion: a mechanism of cisplatin-induced resistance in neuroblastoma cells?, Neurotoxicology, vol.34, pp.51-60, 2013.

R. C. Lobo, N. E. Hubbard, P. Damonte, H. Mori, Z. Penzvalto et al., Glucose Uptake and Intracellular pH in a Mouse Model of Ductal Carcinoma In situ (DCIS) Suggests Metabolic Heterogeneity, Frontiers in cell and developmental biology, vol.4, p.93, 2016.

M. Anderson, A. Moshnikova, D. M. Engelman, Y. K. Reshetnyak, and O. A. Andreev, Probe for the measurement of cell surface pH in vivo and ex vivo, Proc Natl Acad Sci U S A, vol.113, pp.8177-8181, 2016.

D. L. Longo, A. Bartoli, L. Consolino, P. Bardini, F. Arena et al., Vivo Imaging of Tumor Metabolism and Acidosis by Combining PET and MRI-CEST pH Imaging, 2016.

M. Yamagata, K. Hasuda, T. Stamato, and I. F. Tannock, The contribution of lactic acid to acidification of tumours: studies of variant cells lacking lactate dehydrogenase, Br J Cancer, vol.77, pp.1726-1731, 1998.

K. Newell, A. Franchi, J. Pouyssegur, and I. Tannock, Studies with glycolysis-deficient cells suggest that production of lactic acid is not the only cause of tumor acidity, Proc Natl Acad Sci U S A, vol.90, pp.1127-1131, 1993.

G. Helmlinger, A. Sckell, M. Dellian, N. S. Forbes, and R. K. Jain, Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism, Clin Cancer Res, vol.8, pp.1284-1291, 2002.

G. Kroemer and J. Pouyssegur, Tumor cell metabolism: cancer's Achilles' heel, Cancer Cell, vol.13, pp.472-482, 2008.

R. A. Cardone, V. Casavola, and S. J. Reshkin, The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis, Nat Rev Cancer, vol.5, pp.786-795, 2005.

S. K. Parks, J. Chiche, and J. Pouyssegur, pH control mechanisms of tumor survival and growth, J Cell Physiol, vol.226, pp.299-308, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00533764

S. K. Parks and J. Pouyssegur, The Na(+)/HCO3(-) Co-Transporter SLC4A4 Plays a Role in Growth and Migration of Colon and Breast Cancer Cells, J Cell Physiol, vol.230, pp.1954-1963, 2015.

L. Counillon and J. Pouyssegur, The expanding family of eucaryotic Na(+)/H(+) exchangers, J Biol Chem, vol.275, pp.1-4, 2000.

P. Swietach, R. D. Vaughan-jones, and A. L. Harris, Regulation of tumor pH and the role of carbonic anhydrase 9, Cancer Metastasis Rev, vol.26, pp.299-310, 2007.

A. P. Andersen, M. Flinck, E. K. Oernbo, N. B. Pedersen, B. M. Viuff et al., Roles of acid-extruding ion transporters in regulation of breast cancer cell growth in a 3-dimensional microenvironment, Mol Cancer, vol.15, p.45, 2016.

J. Pouyssegur, A. Franchi, G. L'allemain, P. , and S. , Cytoplasmic pH, a key determinant of growth factor-induced DNA synthesis in quiescent fibroblasts, FEBS Lett, vol.190, pp.115-119, 1985.

C. Stock, R. A. Cardone, G. Busco, H. Krahling, A. Schwab et al., Protons extruded by NHE1: digestive or glue?, Eur J Cell Biol, vol.87, pp.591-599, 2008.

C. Stock and A. Schwab, Role of the Na/H exchanger NHE1 in cell migration, Acta Physiol (Oxf), vol.187, pp.149-157, 2006.

C. Stock and A. Schwab, Protons make tumor cells move like clockwork, Pflugers Arch, vol.458, pp.981-992, 2009.

S. Pilon-thomas, K. N. Kodumudi, A. E. El-kenawi, S. Russell, A. M. Weber et al., Neutralization of Tumor Acidity Improves Antitumor Responses to Immunotherapy, Cancer Res, vol.76, pp.1381-1390, 2016.

J. R. Casey, S. Grinstein, and J. Orlowski, Sensors and regulators of intracellular pH, Nat Rev Mol Cell Biol, vol.11, pp.50-61, 2010.

H. J. Park, J. C. Lyons, T. Ohtsubo, and C. W. Song, Acidic environment causes apoptosis by increasing caspase activity, Br J Cancer, vol.80, pp.1892-1897, 1999.

J. Yuan, L. Narayanan, S. Rockwell, and P. M. Glazer, Diminished DNA repair and elevated mutagenesis in mammalian cells exposed to hypoxia and low pH, Cancer Res, vol.60, pp.4372-4376, 2000.

J. Orlowski and S. Grinstein, Na+/H+ exchangers of mammalian cells, J Biol Chem, vol.272, pp.22373-22376, 1997.

J. Lacroix, M. Poet, C. Maehrel, C. , and L. , A mechanism for the activation of the Na/H exchanger NHE-1 by cytoplasmic acidification and mitogens, EMBO Rep, vol.5, pp.91-96, 2004.

S. Paris and J. Pouyssegur, Growth factors activate the Na+/H+ antiporter in quiescent fibroblasts by increasing its affinity for intracellular H+, J Biol Chem, vol.259, pp.10989-10994, 1984.

S. R. Amith, S. Fong, S. Baksh, and L. Fliegel, Na (+)/H (+)exchange in the tumour microenvironment: does NHE1 drive breast cancer carcinogenesis?, The International journal of developmental biology, vol.59, pp.367-377, 2015.

C. Frantz, A. Karydis, P. Nalbant, K. M. Hahn, and D. L. Barber, Positive feedback between Cdc42 activity and H+ efflux by the Na-H exchanger NHE1 for polarity of migrating cells, J Cell Biol, vol.179, pp.403-410, 2007.

C. Sanhueza, J. Araos, L. Naranjo, F. Toledo, A. R. Beltran et al., Sodium/proton exchanger isoform 1 regulates intracellular pH and cell proliferation in human ovarian cancer, Biochim Biophys Acta, vol.1863, pp.81-91, 2016.

S. S. Dykes, C. Gao, W. K. Songock, R. L. Bigelow, G. V. Woude et al., Zinc finger E-box binding homeobox-1 (Zeb1) drives anterograde lysosome trafficking and tumor cell invasion via upregulation of Na+/H+ Exchanger-1 (NHE1), 2016.

S. Akram, H. F. Teong, L. Fliegel, S. Pervaiz, and M. V. Clement, Reactive oxygen species-mediated regulation of the Na+-H+ exchanger 1 gene expression connects intracellular redox status with cells' sensitivity to death triggers, Cell Death Differ, vol.13, pp.628-641, 2006.

K. Hardonniere, E. Saunier, A. Lemarie, M. Fernier, I. Gallais et al., The environmental carcinogen benzo[a]pyrene induces a Warburg-like metabolic reprogramming dependent on NHE1 and associated with cell survival, Scientific reports, vol.6, p.30776, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01359569

L. Y. Bourguignon, P. A. Singleton, F. Diedrich, R. Stern, and E. Gilad, CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion, J Biol Chem, vol.279, pp.26991-27007, 2004.

M. Baumgartner, H. Patel, and D. L. Barber, Na(+)/H(+) exchanger NHE1 as plasma membrane scaffold in the assembly of signaling complexes, Am J Physiol Cell Physiol, vol.287, pp.844-850, 2004.

B. T. Beaty, Y. Wang, J. J. Bravo-cordero, V. P. Sharma, V. Miskolci et al., Talin regulates moesin-NHE-1 recruitment to invadopodia and promotes mammary tumor metastasis, J Cell Biol, vol.205, pp.737-751, 2014.

C. H. Choi, B. A. Webb, M. S. Chimenti, M. P. Jacobson, and D. L. Barber, ) pH sensing by FAK-His58 regulates focal adhesion remodeling, J Cell Biol, vol.202, pp.849-859, 2013.

H. Liu, J. Stupak, J. Zheng, B. O. Keller, B. J. Brix et al., Open tubular immobilized metal ion affinity chromatography combined with MALDI MS and MS/MS for identification of protein phosphorylation sites, Analytical chemistry, vol.76, pp.4223-4232, 2004.

M. E. Malo, L. Li, and L. Fliegel, Mitogen-activated protein kinase-dependent activation of the Na+/H+ exchanger is mediated through phosphorylation of amino acids Ser770 and Ser771, J Biol Chem, vol.282, pp.6292-6299, 2007.

P. Karki, X. Li, D. Schrama, and L. Fliegel, B-Raf associates with and activates the NHE1 isoform of the Na+/H+ exchanger, J Biol Chem, vol.286, pp.13096-13105, 2011.

S. Roger, L. Gillet, J. Y. Le-guennec, and P. Besson, Voltage-gated sodium channels and cancer: is excitability their primary role?, Front Pharmacol, vol.6, p.152, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01762815

S. Roger, M. Potier, C. Vandier, P. Besson, L. Guennec et al., Voltagegated sodium channels: new targets in cancer therapy?, Curr Pharm Des, vol.12, pp.3681-3695, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00141876

S. Roger, J. Rollin, A. Barascu, P. Besson, P. I. Raynal et al., Voltage-gated sodium channels potentiate the invasive capacities of human non-small-cell lung cancer cell lines, Int J Biochem Cell Biol, vol.39, pp.774-786, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00141870

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J Physiol, vol.117, pp.500-544, 1952.

A. L. Hodgkin and A. F. Huxley, Propagation of electrical signals along giant nerve fibers, Proceedings of the Royal Society of London. Series B, vol.140, pp.177-183, 1952.

A. L. Hodgkin and A. F. Huxley, The dual effect of membrane potential on sodium conductance in the giant axon of Loligo, J Physiol, vol.116, pp.497-506, 1952.

A. L. Hodgkin and A. F. Huxley, The components of membrane conductance in the giant axon of Loligo, J Physiol, vol.116, pp.473-496, 1952.

A. L. Hodgkin and A. F. Huxley, Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo, J Physiol, vol.116, pp.449-472, 1952.

A. L. Hodgkin, A. F. Huxley, and B. Katz, Measurement of current-voltage relations in the membrane of the giant axon of Loligo, J Physiol, vol.116, pp.424-448, 1952.

P. Besson, V. Driffort, E. Bon, F. Gradek, S. Chevalier et al., How do voltage-gated sodium channels enhance migration and invasiveness in cancer cells?, Biochim Biophys Acta, vol.1848, pp.2493-2501, 2015.

W. J. Brackenbury, Voltage-gated sodium channels and metastatic disease, Channels (Austin), p.6, 2012.

M. Yang, D. J. Kozminski, L. A. Wold, R. Modak, J. D. Calhoun et al., Therapeutic potential for phenytoin: targeting Na(v)1.5 sodium channels to reduce migration and invasion in metastatic breast cancer, Breast Cancer Res Treat, 2012.

S. P. Fraser, J. K. Diss, A. M. Chioni, M. E. Mycielska, H. Pan et al., Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis, Clin Cancer Res, vol.11, pp.5381-5389, 2005.

L. Brisson, V. Driffort, L. Benoist, M. Poet, L. Counillon et al., ) NaV1.5 Na+ channels allosterically regulate the NHE-1 exchanger and promote the activity of breast cancer cell invadopodia, J Cell Sci, vol.126, pp.4835-4842, 2013.

S. Roger, P. Besson, L. Guennec, and J. Y. , Involvement of a novel fast inward sodium current in the invasion capacity of a breast cancer cell line, Biochim Biophys Acta, vol.1616, pp.107-111, 2003.

L. Gillet, S. Roger, P. Besson, F. Lecaille, J. Gore et al., Voltage-gated Sodium Channel Activity Promotes Cysteine Cathepsin-dependent Invasiveness and Colony Growth of Human Cancer Cells, J Biol Chem, vol.284, pp.8680-8691, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01822230

F. Lecaille, J. Kaleta, and D. Bromme, Human and parasitic papain-like cysteine proteases: their role in physiology and pathology and recent developments in inhibitor design, Chem Rev, vol.102, pp.4459-4488, 2002.

L. Brisson, L. Gillet, S. Calaghan, P. Besson, J. Y. Le-guennec et al., Na(V)1.5 enhances breast cancer cell invasiveness by increasing NHE1-dependent H(+) efflux in caveolae, Oncogene, vol.30, pp.2070-2076, 2011.
URL : https://hal.archives-ouvertes.fr/tel-02862877

M. Nelson, M. Yang, R. Millican-slater, and W. J. Brackenbury, Nav1.5 regulates breast tumor growth and metastatic dissemination in vivo, Oncotarget, vol.6, pp.32914-32929, 2015.

V. Driffort, L. Gillet, E. Bon, S. Marionneau-lambot, T. Oullier et al., Ranolazine inhibits NaV1.5-mediated breast cancer cell invasiveness and lung colonization, Mol Cancer, vol.13, p.264, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01822217

J. Xia, N. Huang, H. Huang, L. Sun, S. Dong et al., Voltage-gated sodium channel Nav 1.7 promotes gastric cancer progression through MACC1-mediated upregulation of NHE1, Int J Cancer, vol.139, pp.2553-2569, 2016.

M. Nelson, M. Yang, A. A. Dowle, J. R. Thomas, and W. J. Brackenbury, The sodium channel-blocking antiepileptic drug phenytoin inhibits breast tumour growth and metastasis, Mol Cancer, vol.14, p.13, 2015.

D. T. Baptista-hon, F. M. Robertson, G. B. Robertson, S. J. Owen, G. W. Rogers et al., Potent inhibition by ropivacaine of metastatic colon cancer SW620 cell invasion and NaV1.5 channel function, Br J Anaesth, vol.113, pp.39-48, 2014.

S. Kellenberger and L. Schild, International Union of Basic and Clinical Pharmacology. XCI. structure, function, and pharmacology of acid-sensing ion channels and the epithelial Na+ channel, Pharmacol Rev, vol.67, pp.1-35, 2015.

M. J. Caterina, M. A. Schumacher, M. Tominaga, T. A. Rosen, J. D. Levine et al., The capsaicin receptor: a heat-activated ion channel in the pain pathway, Nature, vol.389, pp.816-824, 1997.

M. Tominaga, M. J. Caterina, A. B. Malmberg, T. A. Rosen, H. Gilbert et al., The cloned capsaicin receptor integrates multiple pain-producing stimuli, Neuron, vol.21, pp.531-543, 1998.

Y. Y. Wang, R. B. Chang, S. D. Allgood, W. L. Silver, and E. R. Liman, A TRPA1-dependent mechanism for the pungent sensation of weak acids, J Gen Physiol, vol.137, pp.493-505, 2011.

Y. Y. Wang, R. B. Chang, and E. R. Liman, TRPA1 is a component of the nociceptive response to CO2, J Neurosci, vol.30, pp.12958-12963, 2010.

M. Nakanishi, Y. Morita, K. Hata, and Y. Muragaki, Acidic microenvironments induce lymphangiogenesis and IL-8 production via TRPV1 activation in human lymphatic endothelial cells, Exp Cell Res, vol.345, pp.180-189, 2016.

Y. Wan, New Mechanism of Bone Cancer Pain: Tumor Tissue-Derived Endogenous Formaldehyde Induced Bone Cancer Pain via TRPV1 Activation, Adv Exp Med Biol, vol.904, pp.41-58, 2016.

S. Ruparel, M. Bendele, A. Wallace, and D. Green, Released lipids regulate transient receptor potential channel (TRP)-dependent oral cancer pain, Molecular pain, vol.11, p.30, 2015.

N. Kapoor, W. Lee, E. Clark, R. Bartoszewski, C. M. Mcnicholas et al., Interaction of ASIC1 and ENaC subunits in human glioma cells and rat astrocytes, Am J Physiol Cell Physiol, vol.300, pp.1246-1259, 2011.

K. H. Chen, P. Y. Tung, J. C. Wu, Y. Chen, P. C. Chen et al., An acidic extracellular pH induces Src kinase-dependent loss of betacatenin from the adherens junction, Cancer Lett, vol.267, pp.37-48, 2008.

Y. Chen, C. H. Chen, P. Y. Tung, S. H. Huang, and S. M. Wang, An acidic extracellular pH disrupts adherens junctions in HepG2 cells by Src kinases-dependent modification of E-cadherin, J Cell Biochem, vol.108, pp.851-859, 2009.

C. Stock, M. Mueller, H. Kraehling, S. Mally, J. Noel et al., ) pH nanoenvironment at the surface of single melanoma cells, Cell Physiol Biochem, vol.20, pp.679-686, 2007.

S. Peppicelli, F. Bianchini, A. Toti, A. Laurenzana, G. Fibbi et al., Extracellular acidity strengthens mesenchymal stem cells to promote melanoma progression, Cell Cycle, vol.14, pp.3088-3100, 2015.

C. Corbet, N. Draoui, F. Polet, A. Pinto, X. Drozak et al., The SIRT1/HIF2alpha axis drives reductive glutamine metabolism under chronic acidosis and alters tumor response to therapy, Cancer Res, vol.74, pp.5507-5519, 2014.

C. Corbet, A. Pinto, R. Martherus, J. P. Santiago-de-jesus, F. Polet et al., Acidosis Drives the Reprogramming of Fatty Acid Metabolism in Cancer Cells through Changes in Mitochondrial and Histone Acetylation, Cell metabolism, vol.24, pp.311-323, 2016.

S. Taylor, E. P. Spugnini, Y. G. Assaraf, T. Azzarito, C. Rauch et al., Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach, Drug Resist Updat, vol.23, pp.69-78, 2015.

J. W. Wojtkowiak, D. Verduzco, K. J. Schramm, and R. J. Gillies, Drug resistance and cellular adaptation to tumor acidic pH microenvironment, Mol Pharm, vol.8, pp.2032-2038, 2011.

V. Vukovic and I. F. Tannock, Influence of low pH on cytotoxicity of paclitaxel, mitoxantrone and topotecan, Br J Cancer, vol.75, pp.1167-1172, 1997.

L. E. Gerweck, S. Vijayappa, and S. Kozin, Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics, Mol Cancer Ther, vol.5, pp.1275-1279, 2006.

B. P. Mahoney, N. Raghunand, B. Baggett, and R. J. Gillies, Tumor acidity, ion trapping and chemotherapeutics. I. Acid pH affects the distribution of chemotherapeutic agents in vitro, Biochem Pharmacol, vol.66, pp.1207-1218, 2003.

S. Avnet, S. Lemma, M. Cortini, P. Pellegrini, F. Perut et al., Altered pH gradient at the plasma membrane of osteosarcoma cells is a key mechanism of drug resistance, Oncotarget, 2016.

L. E. Gerweck and K. Seetharaman, Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer, Cancer Res, vol.56, pp.1194-1198, 1996.

N. Raghunand, B. P. Mahoney, and R. J. Gillies, Tumor acidity, ion trapping and chemotherapeutics. II. pH-dependent partition coefficients predict importance of ion trapping on pharmacokinetics of weakly basic chemotherapeutic agents, Biochem Pharmacol, vol.66, pp.1219-1229, 2003.

D. W. Siemann, M. Chapman, and A. Beikirch, Effects of oxygenation and pH on tumor cell response to alkylating chemotherapy, Int J Radiat Oncol Biol Phys, vol.20, pp.287-289, 1991.

L. D. Skarsgard, M. W. Skwarchuk, A. Vinczan, J. Kristl, and D. J. Chaplin, The cytotoxicity of melphalan and its relationship to pH, hypoxia and drug uptake, Anticancer Res, vol.15, pp.219-223, 1995.

H. M. Kroon, M. Moncrieff, P. C. Kam, and J. F. Thompson, Outcomes following isolated limb infusion for melanoma. A 14-year experience, Ann Surg Oncol, vol.15, pp.3003-3013, 2008.

N. Altan, Y. Chen, M. Schindler, and S. M. Simon, Defective acidification in human breast tumor cells and implications for chemotherapy, J Exp Med, vol.187, pp.1583-1598, 1998.

O. Thews, B. Gassner, D. K. Kelleher, G. Schwerdt, and M. Gekle, Impact of extracellular acidity on the activity of P-glycoprotein and the cytotoxicity of chemotherapeutic drugs, Neoplasia, vol.8, pp.143-152, 2006.

C. Lotz, D. K. Kelleher, B. Gassner, M. Gekle, P. Vaupel et al., Role of the tumor microenvironment in the activity and expression of the pglycoprotein in human colon carcinoma cells, Oncol Rep, vol.17, pp.239-244, 2007.

C. Rauch, On the relationship between Lipinski's 2nd rule and cytosolic pH changes in doxorubicin resistance levels in cancer cells: a comparison to published data, Eur Biophys J, vol.38, pp.829-846, 2009.

A. S. Silva, J. A. Yunes, R. J. Gillies, and R. A. Gatenby, The potential role of systemic buffers in reducing intratumoral extracellular pH and acid-mediated invasion, Cancer Res, vol.69, pp.2677-2684, 2009.

N. Raghunand, X. He, R. Van-sluis, B. Mahoney, B. Baggett et al., Enhancement of chemotherapy by manipulation of tumour pH, Br J Cancer, vol.80, pp.1005-1011, 1999.

I. F. Robey, B. K. Baggett, N. D. Kirkpatrick, D. J. Roe, J. Dosescu et al., Bicarbonate increases tumor pH and inhibits spontaneous metastases, Cancer Res, vol.69, pp.2260-2268, 2009.

M. D. Ribeiro, A. S. Silva, K. M. Bailey, N. B. Kumar, T. A. Sellers et al., Buffer Therapy for Cancer, J Nutr Food Sci, vol.2, p.6, 2012.

M. Yu, C. Lee, M. Wang, and I. F. Tannock, Influence of the proton pump inhibitor lansoprazole on distribution and activity of doxorubicin in solid tumors, Cancer Sci, vol.106, pp.1438-1447, 2015.

D. J. Klionsky, Autophagy revisited: a conversation with Christian de Duve, Autophagy, vol.4, pp.740-743, 2008.

Z. Yang and D. J. Klionsky, Eaten alive: a history of macroautophagy, Nat Cell Biol, vol.12, pp.814-822, 2010.

D. C. Rubinsztein, P. Codogno, and B. Levine, Autophagy modulation as a potential therapeutic target for diverse diseases, Nat Rev Drug Discov, vol.11, pp.709-730, 2012.

H. Weidberg, E. Shvets, and Z. Elazar, Biogenesis and cargo selectivity of autophagosomes, Annu Rev Biochem, vol.80, pp.125-156, 2011.

K. H. Kim and M. S. Lee, Autophagy--a key player in cellular and body metabolism, Nat Rev Endocrinol, vol.10, pp.322-337, 2014.

M. Pang, H. Wang, P. Rao, Y. Zhao, J. Xie et al., Autophagy links betacatenin and Smad signaling to promote epithelial-mesenchymal transition via upregulation of integrin linked kinase, Int J Biochem Cell Biol, vol.76, pp.123-134, 2016.

Y. Jiang, A. N. Woosley, N. Sivalingam, S. Natarajan, and P. H. Howe, Cathepsin-B-mediated cleavage of Disabled-2 regulates TGF-beta-induced autophagy, Nat Cell Biol, vol.18, pp.851-863, 2016.

S. Kaushik, U. Bandyopadhyay, S. Sridhar, R. Kiffin, M. Martinez-vicente et al., Chaperone-mediated autophagy at a glance, J Cell Sci, vol.124, pp.495-499, 2011.

N. Hosokawa, T. Hara, T. Kaizuka, C. Kishi, A. Takamura et al., Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy, Mol Biol Cell, vol.20, 1981.

C. H. Jung, C. B. Jun, S. H. Ro, Y. M. Kim, N. M. Otto et al., ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery, Mol Biol Cell, vol.20, pp.1992-2003, 2009.

N. Mizushima and M. Komatsu, Autophagy: renovation of cells and tissues, Cell, vol.147, pp.728-741, 2011.

S. Rao, L. Tortola, T. Perlot, G. Wirnsberger, M. Novatchkova et al., A dual role for autophagy in a murine model of lung cancer, Nature communications, vol.5, p.3056, 2014.

E. White, The role for autophagy in cancer, J Clin Invest, vol.125, pp.42-46, 2015.

Z. Yue, S. Jin, C. Yang, A. J. Levine, and N. Heintz, Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor, Proc Natl Acad Sci U S A, vol.100, pp.15077-15082, 2003.

X. Qu, J. Yu, G. Bhagat, N. Furuya, H. Hibshoosh et al., Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene, J Clin Invest, vol.112, pp.1809-1820, 2003.

A. M. Strohecker, J. Y. Guo, G. Karsli-uzunbas, S. M. Price, G. J. Chen et al., Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors, Cancer Discov, vol.3, pp.1272-1285, 2013.

J. Y. Guo, X. Teng, S. V. Laddha, S. Ma, S. C. Van-nostrand et al., Autophagy provides metabolic substrates to maintain energy charge and nucleotide pools in Ras-driven lung cancer cells, Genes & development, vol.30, pp.1704-1717, 2016.

L. Brisson, P. Banski, M. Sboarina, C. Dethier, P. Danhier et al., Lactate Dehydrogenase B Controls Lysosome Activity and Autophagy in Cancer, Cancer Cell, vol.30, pp.418-431, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02908196

R. Dechant, M. Binda, S. S. Lee, S. Pelet, J. Winderickx et al., Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase, EMBO J, vol.29, pp.2515-2526, 2010.

R. Dechant and M. Peter, The N-terminal domain of the V-ATPase subunit 'a' is regulated by pH in vitro and in vivo, Channels (Austin), vol.5, pp.4-8, 2011.

R. Dechant, S. Saad, A. J. Ibanez, and M. Peter, Cytosolic pH regulates cell growth through distinct GTPases, Arf1 and Gtr1, to promote Ras/PKA and TORC1 activity, Mol Cell, vol.55, pp.409-421, 2014.

R. Dechant and M. Peter, Cytosolic pH: A conserved regulator of cell growth?, Mol Cell Oncol, vol.1, p.969643, 2014.

A. Efeyan, R. Zoncu, S. Chang, I. Gumper, H. Snitkin et al., Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival, Nature, vol.493, pp.679-683, 2013.

L. Bar-peled and D. M. Sabatini, Regulation of mTORC1 by amino acids, Trends Cell Biol, vol.24, pp.400-406, 2014.

A. D. Balgi, G. H. Diering, E. Donohue, K. K. Lam, B. D. Fonseca et al., Regulation of mTORC1 signaling by pH, PLoS One, vol.6, p.21549, 2011.

X. Sui, R. Chen, Z. Wang, Z. Huang, N. Kong et al., Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment, Cell Death Dis, vol.4, p.838, 2013.

M. L. Marino, P. Pellegrini, G. Di-lernia, M. Djavaheri-mergny, S. Brnjic et al., Autophagy is a protective mechanism for human melanoma cells under acidic stress, J Biol Chem, vol.287, pp.30664-30676, 2012.

J. W. Wojtkowiak, J. M. Rothberg, V. Kumar, K. J. Schramm, E. Haller et al., Chronic autophagy is a cellular adaptation to tumor acidic pH microenvironments, Cancer Res, vol.72, pp.3938-3947, 2012.

T. Xu, H. Su, S. Ganapathy, and Z. M. Yuan, Modulation of autophagic activity by extracellular pH, Autophagy, vol.7, pp.1316-1322, 2011.

R. K. Amaravadi, D. Yu, J. J. Lum, T. Bui, M. A. Christophorou et al., Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma, J Clin Invest, vol.117, pp.326-336, 2007.

A. Duffy, J. Le, E. Sausville, and A. Emadi, Autophagy modulation: a target for cancer treatment development, Cancer Chemother Pharmacol, vol.75, pp.439-447, 2015.

P. Pellegrini, A. Strambi, C. Zipoli, M. Hagg-olofsson, M. Buoncervello et al., Acidic extracellular pH neutralizes the autophagyinhibiting activity of chloroquine: implications for cancer therapies, Autophagy, vol.10, pp.562-571, 2014.

P. Pellegrini, M. Dyczynski, F. V. Sbrana, M. Karlgren, M. Buoncervello et al., Tumor acidosis enhances cytotoxic effects and autophagy inhibition by salinomycin on cancer cell lines and cancer stem cells, Oncotarget, vol.7, pp.35703-35723, 2016.

J. R. Jangamreddy, S. Panigrahi, and M. J. Los, Monitoring of autophagy is complicated--salinomycin as an example, Biochim Biophys Acta, vol.1853, pp.604-610, 2015.

A. Apel, I. Herr, H. Schwarz, H. P. Rodemann, and A. Mayer, Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy, Cancer Res, vol.68, pp.1485-1494, 2008.

S. L. Lomonaco, S. Finniss, C. Xiang, A. Decarvalho, F. Umansky et al., The induction of autophagy by gammaradiation contributes to the radioresistance of glioma stem cells, Int J Cancer, vol.125, pp.717-722, 2009.

S. Paglin, T. Hollister, T. Delohery, N. Hackett, M. Mcmahill et al., A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles, Cancer Res, vol.61, pp.439-444, 2001.

S. Paglin, N. Y. Lee, C. Nakar, M. Fitzgerald, J. Plotkin et al., Rapamycin-sensitive pathway regulates mitochondrial membrane potential, autophagy, and survival in irradiated MCF-7 cells, Cancer Res, vol.65, pp.11061-11070, 2005.

D. R. Soto-pantoja, T. W. Miller, M. L. Pendrak, W. G. Degraff, C. Sullivan et al., CD47 deficiency confers cell and tissue radioprotection by activation of autophagy, Autophagy, vol.8, pp.1628-1642, 2012.

G. Kroemer and B. Levine, Autophagic cell death: the story of a misnomer, Nat Rev Mol Cell Biol, vol.9, pp.1004-1010, 2008.

S. Shen, O. Kepp, and G. Kroemer, The end of autophagic cell death?, Autophagy, vol.8, pp.1-3, 2012.

Y. Wang, N. Zhang, L. Zhang, R. Li, W. Fu et al., Autophagy Regulates Chromatin Ubiquitination in DNA Damage Response through Elimination of SQSTM1/p62, Mol Cell, vol.63, pp.34-48, 2016.

M. R. Rosenfeld, X. Ye, J. G. Supko, S. Desideri, S. A. Grossman et al., A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme, Autophagy, vol.10, pp.1359-1368, 2014.

T. Ohtsubo, H. Igawa, T. Saito, H. Matsumoto, H. J. Park et al., Acidic environment modifies heat-or radiation-induced apoptosis in human maxillary cancer cells, Int J Radiat Oncol Biol Phys, vol.49, pp.1391-1398, 2001.

F. Luciani, M. Spada, A. De-milito, A. Molinari, L. Rivoltini et al., Effect of proton pump inhibitor pretreatment on resistance of solid tumors to cytotoxic drugs, J Natl Cancer Inst, vol.96, pp.1702-1713, 2004.

Q. Tan, A. M. Joshua, J. K. Saggar, M. Yu, M. Wang et al., Effect of pantoprazole to enhance activity of docetaxel against human tumour xenografts by inhibiting autophagy, Br J Cancer, vol.112, pp.832-840, 2015.

L. Galluzzi, J. M. Pedro, S. Demaria, S. C. Formenti, and G. Kroemer, Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy, Nat Rev Clin Oncol, 2016.

G. Lauritzen, M. B. Jensen, E. Boedtkjer, R. Dybboe, C. Aalkjaer et al., NBCn1 and NHE1 expression and activity in DeltaNErbB2 receptor-expressing MCF-7 breast cancer cells: contributions to pHi regulation and chemotherapy resistance, Exp Cell Res, vol.316, pp.2538-2553, 2010.

R. A. Cardone, M. R. Greco, K. Zeeberg, A. Zaccagnino, M. Saccomano et al., A novel NHE1-centered signaling cassette drives epidermal growth factor receptor-dependent pancreatic tumor metastasis and is a target for combination therapy, Neoplasia, vol.17, pp.155-166, 2015.

S. R. Amith, J. M. Wilkinson, S. Baksh, and L. Fliegel, The Na(+)/H(+) exchanger (NHE1) as a novel co-adjuvant target in paclitaxel therapy of triplenegative breast cancer cells, Oncotarget, vol.6, pp.1262-1275, 2015.

D. P. Rose, J. M. Connolly, C. , and M. , Effect of omega-3 fatty acids on the progression of metastases after the surgical excision of human breast cancer cell solid tumors growing in nude mice, Clin Cancer Res, vol.2, pp.1751-1756, 1996.

P. Bougnoux, N. Hajjaji, K. Maheo, C. Couet, C. et al., Fatty acids and breast cancer: sensitization to treatments and prevention of metastatic re-growth, Prog Lipid Res, vol.49, pp.76-86, 2010.

P. Bougnoux, Curr Opin Clin Nutr Metab Care, vol.2, pp.121-126, 1999.

A. M. Eltweri, A. L. Thomas, M. Metcalfe, P. C. Calder, A. R. Dennison et al., Potential applications of fish oils rich in omega-3 polyunsaturated fatty acids in the management of gastrointestinal cancer, Clinical nutrition, 2016.

G. Yan, L. Li, B. Zhu, L. , and Y. , Lipidome in colorectal cancer, Oncotarget, vol.7, pp.33429-33439, 2016.

X. Moreel, J. Allaire, C. Leger, A. Caron, M. E. Labonte et al., Prostatic and dietary omega-3 fatty acids and prostate cancer progression during active surveillance, Cancer prevention research, vol.7, pp.766-776, 2014.

M. Aucoin, K. Cooley, C. Knee, H. Fritz, L. G. Balneaves et al., Fish-Derived Omega-3 Fatty Acids and Prostate Cancer: A Systematic Review, 2016.

P. Bougnoux, B. Giraudeau, and C. Couet, Diet, cancer, and the lipidome, Cancer Epidemiol Biomarkers Prev, vol.15, pp.416-421, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00068759

P. Bougnoux, N. Hajjaji, and C. Couet, The lipidome as a composite biomarker of the modifiable part of the risk of breast cancer, Prostaglandins Leukot Essent Fatty Acids, vol.79, pp.93-96, 2008.

L. Ouldamer, C. Goupille, A. Vilde, F. Arbion, G. Body et al., N-3 Polyunsaturated Fatty Acids of Marine Origin and Multifocality in Human Breast Cancer, PLoS One, vol.11, p.147148, 2016.

A. Barascu, P. Besson, O. Le-floch, P. Bougnoux, J. et al., CDK1-cyclin B1 mediates the inhibition of proliferation induced by omega-3 fatty acids in MDA-MB-231 breast cancer cells, Int J Biochem Cell Biol, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00068760

N. Hajjaji, P. Besson, and P. Bougnoux, Tumor and non-tumor tissues differential oxidative stress response to supplemental DHA and chemotherapy in rats, Cancer Chemother Pharmacol, vol.70, pp.17-23, 2012.

N. Hajjaji, V. Schubnel, and P. Bougnoux, Determinants of DHA incorporation into tumor tissue during dietary DHA supplementation, Lipids, vol.46, pp.1063-1069, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00599021

L. Ouldamer, L. Nadal-desbarats, S. Chevalier, G. Body, C. Goupille et al., NMR-Based Lipidomic Approach To Evaluate Controlled Dietary Intake of Lipids in Adipose Tissue of a Rat Mammary Tumor Model, Journal of proteome research, vol.15, pp.868-878, 2016.

R. Wannous, E. Bon, K. Maheo, C. Goupille, J. Chamouton et al., PPARbeta mRNA expression, reduced by n-3 PUFA diet in mammary tumor, controls breast cancer cell growth, Biochim Biophys Acta, vol.1831, pp.1618-1625, 2013.

L. Chauvin, C. Goupille, C. Blanc, M. Pinault, I. Domingo et al., Long chain n-3 polyunsaturated fatty acids increase the efficacy of docetaxel in mammary cancer cells by downregulating Akt and PKCepsilon/delta-induced ERK pathways, Biochim Biophys Acta, vol.1861, pp.380-390, 2016.

S. Kornfeld, C. Goupille, S. Vibet, S. Chevalier, A. Pinet et al., Reducing endothelial NOS activation and interstitial fluid pressure with n-3 PUFA offset tumor chemoresistance, Carcinogenesis, vol.33, pp.260-267, 2012.

K. Maheo, S. Chevalier, S. Vibet, P. Bougnoux, S. Richard et al., Non-invasive quantification of tumor vascular architecture during docetaxel-chemotherapy, Breast Cancer Res Treat, vol.134, pp.1013-1025, 2012.

C. Goupille, L. Chauvin, S. Vibet, S. Kornfeld, I. Domingo et al., Remodeling of the vascular network architecture in mammary tumors: role of epiregulin, an antiangiogenic effector of DHA, PLoS One In revision, 2016.

Y. Zhang, L. Han, W. Qi, D. Cheng, X. Ma et al., Eicosapentaenoic acid (EPA) induced apoptosis in HepG2 cells through ROS-Ca(2+)-JNK mitochondrial pathways, Biochem Biophys Res Commun, vol.456, pp.926-932, 2015.

J. Abdi, J. Garssen, J. Faber, and F. A. Redegeld, Omega-3 fatty acids, EPA and DHA induce apoptosis and enhance drug sensitivity in multiple myeloma cells but not in normal peripheral mononuclear cells, J Nutr Biochem, vol.25, pp.1254-1262, 2014.

S. Rohrbach, Effects of dietary polyunsaturated fatty acids on mitochondria, Curr Pharm Des, vol.15, pp.4103-4116, 2009.

N. Agnihotri, G. Sharma, I. Rani, . Renuka, and A. Bhatnagar, Fish oil prevents colon cancer by modulation of structure and function of mitochondria, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, vol.82, pp.90-97, 2016.

H. Zhao, B. R. Pflug, X. Lai, W. , and M. , Pyruvate dehydrogenase alpha 1 as a target of omega-3 polyunsaturated fatty acids in human prostate cancer through a global phosphoproteomic analysis, Proteomics, vol.16, pp.2419-2431, 2016.

M. Mouradian, K. D. Kikawa, B. P. Dranka, S. M. Komas, B. Kalyanaraman et al., Docosahexaenoic acid attenuates breast cancer cell metabolism and the Warburg phenotype by targeting bioenergetic function, Molecular carcinogenesis, vol.54, pp.810-820, 2015.

L. Manzi, L. Costantini, R. Molinari, and N. Merendino, Effect of Dietary omega-3 Polyunsaturated Fatty Acid DHA on Glycolytic Enzymes and Warburg Phenotypes in Cancer, p.137097, 2015.

K. Jing, K. S. Song, S. Shin, N. Kim, S. Jeong et al., Docosahexaenoic acid induces autophagy through p53/AMPK/mTOR signaling and promotes apoptosis in human cancer cells harboring wild-type p53, vol.7, pp.1348-1358, 2011.

Z. Tylichova, N. Strakova, J. Vondracek, A. H. Vaculova, A. Kozubik et al., Activation of autophagy and PPARgamma protect colon cancer cells against apoptosis induced by interactive effects of butyrate and DHA in a cell type-dependent manner: The role of cell differentiation, J Nutr Biochem, vol.39, pp.145-155, 2017.

K. Pettersen, V. T. Monsen, C. H. Hakvag-pettersen, H. B. Overland, G. Pettersen et al., DHA-induced stress response in human colon cancer cells -Focus on oxidative stress and autophagy, Free Radic Biol Med, vol.90, pp.158-172, 2016.

D. D'eliseo, G. Di-rocco, R. Loria, S. Soddu, A. Santoni et al., Epitelial-to-mesenchimal transition and invasion are upmodulated by tumor-expressed granzyme B and inhibited by docosahexaenoic acid in human colorectal cancer cells, J Exp Clin Cancer Res, vol.35, p.24, 2016.

X. Yin, X. W. Yu, P. Zhu, Y. M. Zhang, X. H. Zhang et al., Endogenously synthesized n-3 fatty acids in fat-1 transgenic mice prevent melanoma progression by increasing E-cadherin expression and inhibiting beta-catenin signaling, Molecular medicine reports, vol.14, pp.3476-3484, 2016.

V. Blanckaert, L. Ulmann, V. Mimouni, J. Antol, L. Brancquart et al., Docosahexaenoic acid intake decreases proliferation, increases apoptosis and decreases the invasive potential of the human breast carcinoma cell line MDA-MB-231, Int J Oncol, vol.36, pp.737-742, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02001122

L. Gillet, S. Roger, P. Bougnoux, J. Y. Le-guennec, and P. Besson, Beneficial effects of omega-3 long-chain fatty acids in breast cancer and cardiovascular diseases: voltage-gated sodium channels as a common feature, Biochimie, vol.93, pp.4-6, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01822228

D. P. Rose, J. M. Connolly, and X. H. Liu, Fatty acid regulation of breast cancer cell growth and invasion, Adv Exp Med Biol, vol.422, pp.47-55, 1997.

D. P. Rose, J. Rayburn, M. A. Hatala, and J. M. Connolly, Effects of dietary fish oil on fatty acids and eicosanoids in metastasizing human breast cancer cells, Nutr Cancer, vol.22, pp.131-141, 1994.

A. P. Kumar, A. L. Quake, M. K. Chang, T. Zhou, K. S. Lim et al., Repression of NHE1 expression by PPARgamma activation is a potential new approach for specific inhibition of the growth of tumor cells in vitro and in vivo, Cancer Res, vol.69, pp.8636-8644, 2009.

P. Besson, J. Gore, E. Vincent, C. Hoinard, and P. Bougnoux, Inhibition of Na+/H+ exchanger activity by an alkyl-lysophospholipid analogue in a human breast cancer cell line, Biochem Pharmacol, vol.51, pp.1153-1158, 1996.

J. Lacroix, M. Poet, L. Huc, V. Morello, N. Djerbi et al., Kinetic analysis of the regulation of the Na+/H+ exchanger NHE-1 by osmotic shocks, Biochemistry, vol.47, pp.13674-13685, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00674405

T. S. Tillman and M. Cascio, Effects of membrane lipids on ion channel structure and function, Cell Biochem Biophys, vol.38, pp.161-190, 2003.

S. Jude, S. Bedut, S. Roger, M. Pinault, P. Champeroux et al., Peroxidation of docosahexaenoic acid is responsible for its effects on I TO and I SS in rat ventricular myocytes, Br J Pharmacol, vol.139, pp.816-822, 2003.

P. Yaqoob and S. R. Shaikh, The nutritional and clinical significance of lipid rafts, Curr Opin Clin Nutr Metab Care, vol.13, pp.156-166, 2010.

B. Dendele, X. Tekpli, K. Hardonniere, J. A. Holme, L. Debure et al., Protective action of n-3 fatty acids on benzo[a]pyrene-induced apoptosis through the plasma membrane remodeling-dependent NHE1 pathway, Chem Biol Interact, vol.207, pp.41-51, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00950341

C. D. House, C. J. Vaske, A. M. Schwartz, V. Obias, B. Frank et al., Voltage-gated Na+ channel SCN5A is a key regulator of a gene transcriptional network that controls colon cancer invasion, Cancer Res, vol.70, pp.6957-6967, 2010.

C. D. House, B. D. Wang, K. Ceniccola, R. Williams, M. Simaan et al., Voltage-gated Na+ Channel Activity Increases Colon Cancer Transcriptional Activity and Invasion Via Persistent MAPK Signaling, Scientific reports, vol.5, p.11541, 2015.

J. X. Kang and A. Leaf, Evidence that free polyunsaturated fatty acids modify Na+ channels by directly binding to the channel proteins, Proc Natl Acad Sci, pp.3542-3546, 1996.

J. X. Kang, Y. Li, and A. Leaf, Regulation of sodium channel gene expression by class I antiarrhythmic drugs and n -3 polyunsaturated fatty acids in cultured neonatal rat cardiac myocytes, Proc Natl Acad Sci U S A, vol.94, pp.2724-2728, 1997.

C. Pignier, C. Revenaz, I. Rauly-lestienne, D. Cussac, A. Delhon et al., Direct protective effects of poly-unsaturated fatty acids, DHA and EPA, against activation of cardiac late sodium current: a mechanism for ischemia selectivity, Basic Res Cardiol, vol.102, pp.553-564, 2007.

Y. F. Xiao, Q. Ke, S. Y. Wang, K. Auktor, Y. Yang et al., Single point mutations affect fatty acid block of human myocardial sodium channel alpha subunit Na+ channels, Proc Natl Acad Sci U S A, vol.98, pp.3606-3611, 2001.

Y. F. Xiao, S. N. Wright, G. K. Wang, J. P. Morgan, and A. Leaf, Fatty acids suppress voltage-gated Na+ currents in HEK293t cells transfected with the alpha-subunit of the human cardiac Na+ channel, Proc Natl Acad Sci U S A, vol.95, pp.2680-2685, 1998.

R. Wannous, E. Bon, L. Gillet, J. Chamouton, G. Weber et al., Suppression of PPARbeta, and DHA treatment, inhibit NaV1.5 and NHE-1 pro-invasive activities, Pflugers Arch, vol.467, pp.1249-1259, 2015.

B. Isbilen, S. P. Fraser, and M. B. Djamgoz, Docosahexaenoic acid (omega-3) blocks voltage-gated sodium channel activity and migration of MDA-MB-231 human breast cancer cells, Int J Biochem Cell Biol, vol.38, pp.2173-2182, 2006.