T. Lammers, F. Kiessling, W. E. Hennink, and G. Storm, Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress, J Control Release, vol.161, pp.175-87, 2012.

W. Dai, X. Wang, G. Song, T. Liu, B. He et al., Combination antitumor therapy with targeted dual-nanomedicines, Adv Drug Deliv Rev, vol.115, pp.23-45, 2017.

H. Maeda, Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity, Adv Drug Deliv Rev, vol.91, pp.3-6, 2015.

H. Maeda, H. Nakamura, and J. Fang, The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo, Adv Drug Deliv Rev, vol.65, pp.71-80, 2013.

F. Danhier, To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine?, J Control Release, vol.244, pp.108-129, 2016.

A. E. Hansen, A. L. Petersen, J. R. Henriksen, B. Boerresen, P. Rasmussen et al., Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes, ACS Nano, vol.9, pp.6985-95, 2015.

E. Muntimadugu, N. Kommineni, and W. Khan, Exploring the potential of nanotherapeutics in targeting tumor microenvironment for cancer therapy, Pharmacol Res, vol.126, pp.109-131, 2017.

A. David, Peptide ligand-modified nanomedicines for targeting cells at the tumor microenvironment, Adv Drug Deliv Rev, vol.119, pp.120-162, 2017.

N. Bertrand, J. Wu, X. Xu, N. Kamaly, and O. C. Farokhzad, Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology, Adv Drug Deliv Rev, vol.66, pp.2-25, 2014.

Y. Safdari, V. Ahmadzadeh, M. Khalili, H. Z. Jaliani, V. Zarei et al., Use of single chain antibody derivatives for targeted drug delivery, Mol Med, vol.22, pp.258-70, 2016.

M. K. Yu, J. Park, and J. S. , Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy, Theranostics, vol.2, pp.3-44, 2012.

V. J. Yao, S. Angelo, K. S. Butler, T. C. Smith, T. L. Marchiò et al., Ligand-targeted theranostic nanomedicines against cancer, J Control Release, vol.240, pp.267-86, 2016.

D. A. Richards, A. Maruani, and V. Chudasama, Antibody fragments as nanoparticle targeting ligands: a step in the right direction, Chem Sci, vol.8, pp.63-77, 2017.

T. K. Jain, J. Richey, M. Strand, D. L. Leslie-pelecky, C. A. Flask et al., Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging, Biomaterials, vol.29, pp.4012-4033, 2008.

F. M. Kievit and M. Zhang, Surface engineering of iron oxide nanoparticles for targeted cancer therapy, Acc Chem Res, vol.44, pp.853-62, 2011.

C. Alric, N. Aubrey, E. Allard-vannier, A. Di-tommaso, T. Blondy et al., Covalent conjugation of cysteine-engineered scFv to PEGylated magnetic nanoprobes for immunotargeting of breast cancer cells, RSC Adv, vol.6, pp.37099-109, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01309513

D. J. Slamon, G. M. Clark, S. G. Wong, W. J. Levin, A. Ullrich et al., Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene, Science, vol.235, pp.177-82, 1987.

S. Loibl and L. Gianni, HER2-positive breast cancer, Lancet, vol.389, pp.2415-2444, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02464524

K. Herve, L. Douziech-eyrolles, E. Munnier, S. Cohen-jonathan, M. Souce et al., The development of stable aqueous suspensions of PEGylated SPIONs for biomedical applications, Nanotechnology, vol.19, p.465608, 2008.

K. L. Vigor, P. G. Kyrtatos, S. Minogue, A. Kt, H. Kogelberg et al., Nanoparticles functionalized with recombinant single chain Fv antibody fragments (scFv) for the magnetic resonance imaging of cancer cells, Biomaterials, vol.31, pp.1307-1322, 2010.

E. Perillo, K. Herve-aubert, E. Allard-vannier, A. Falanga, S. Galdiero et al., Synthesis and in vitro evaluation of fluorescent and magnetic nanoparticles functionalized with a cell penetrating peptide for cancer theranosis, J Colloid Interface Sci, vol.499, pp.209-226, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01515714

Z. Lakhrif, M. Pugniere, C. Henriquet, A. Di-tommaso, I. Dimier-poisson et al., A method to confer Protein L binding ability to any antibody fragment, MAbs, vol.8, pp.379-88, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02297085

K. Kanazaki, K. Sano, A. Makino, Y. Shimizu, F. Yamauchi et al., Development of anti-HER2 fragment antibody conjugated to iron oxide nanoparticles for in vivo HER2-targeted photoacoustic tumor imaging, Nanomedicine, vol.11, pp.2051-60, 2015.

R. M. Neve, K. Chin, J. Fridlyand, J. Yeh, F. L. Baehner et al., A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes, Cancer Cell, vol.10, pp.515-542, 2006.

K. Subik, J. F. Lee, L. Baxter, T. Strzepek, D. Costello et al., The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines, Breast Cancer (Auckl), vol.4, pp.35-41, 2010.

S. Dou, X. Z. Yang, M. H. Xiong, C. Y. Sun, Y. D. Yao et al., ScFvdecorated PEG-PLA-based nanoparticles for enhanced siRNA delivery to Her2(+) breast cancer, Adv Healthc Mater, vol.3, pp.1792-803, 2014.

G. Sahay, D. Y. Alakhova, and A. V. Kabanov, Endocytosis of nanomedicines, J Control Release, vol.145, pp.182-95, 2010.

M. Longmire, P. L. Choyke, and H. Kobayashi, Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats, Nanomedicine (Lond), vol.3, pp.703-720, 2008.

H. Arami, A. Khandhar, D. Liggitt, and K. M. Krishnan, In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles, Chem Soc Rev, vol.44, pp.8576-607, 2015.

B. E. Van-beers, C. Sempoux, R. Materne, M. Delos, and A. M. Smith, Biodistribution of ultrasmall iron oxide particles in the rat liver, J Magn Reson Imaging, vol.13, pp.594-603, 2001.

N. Ding, K. Sano, K. Kanazaki, M. Ohashi, J. Deguchi et al., In vivo HER2-targeted magnetic resonance tumor imaging using iron oxide nanoparticles conjugated with anti-HER2 fragment antibody, Mol Imaging Biol, vol.18, pp.870-876, 2016.