D. Mahmood, N. Javaid, N. Alrajeh, Z. A. Khan, U. Qasim et al., Realistic Scheduling Mechanism for Smart Homes [CrossRef] 4. International Organization for Standardization. ISO 50001?Energy Management Systems?Requirements with Guidance for Use; International Organization for Standardization, Energies, vol.2016, issue.202, 2011.

I. Laskurain, I. Heras-saizarbitoria, and M. Casadesús, Fostering renewable energy sources by standards for environmental and energy management. Renew. Sustain. Energy Rev, Malmgren, C. Evaluating the Management System Approach for Industrial Energy Efficiency Improvements. Energies 2016, pp.1148-1156, 2015.

H. Bae, J. Yoon, Y. Lee, J. Lee, T. Kim et al., User-friendly demand side management for smart grid networks, Proceedings of the 2014 International Conference on Information Networking (ICOIN2014), pp.10-12, 2014.

A. Mohsenian-rad, V. W. Wong, J. Jatskevich, R. Schober, and A. Leon-garcia, Autonomous Demand-Side Management Based on Game-Theoretic Energy Consumption Scheduling for the Future Smart Grid, IEEE Transactions on Smart Grid, vol.1, issue.3, pp.320-331, 2010.
DOI : 10.1109/TSG.2010.2089069

E. M. Rodrigues, R. Godina, M. Shafie-khah, and J. P. Catalão, Experimental Results on a Wireless Wattmeter Device for the Integration in Home Energy Management Systems, Energies, vol.82, issue.3, p.398, 2017.
DOI : 10.1049/iet-cds.2013.0432

S. Ryu, J. Noh, and H. Kim, Deep Neural Network Based Demand Side Short Term Load Forecasting, Energies, vol.15, issue.1, 2017.
DOI : 10.1016/S0893-6080(05)80131-5

J. Buitrago and S. Asfour, Short-Term Forecasting of Electric Loads Using Nonlinear Autoregressive Artificial Neural Networks with Exogenous Vector Inputs, Energies, vol.10, issue.1, p.40, 2017.
DOI : 10.1016/j.neucom.2007.11.018

C. Hernández-hernández, F. Rodríguez, C. Da, P. R. Mendes, J. E. Normey-rico et al., The Comparison Study of Short-Term Prediction Methods to Enhance the Model Predictive Controller Applied to Microgrid Energy Management, Energies, vol.15, issue.7, p.884, 2017.
DOI : 10.1109/TAC.1974.1100705

H. Zheng, J. Yuan, and L. Chen, Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation, Energies, vol.1, issue.8, p.1168, 2017.
DOI : 10.1109/72.279181

P. Palensky and D. Dietrich, Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads, IEEE Transactions on Industrial Informatics, vol.7, issue.3, pp.381-388, 2011.
DOI : 10.1109/TII.2011.2158841

URL : http://palensky.org/pdf/Palensky2011.pdf

D. Setlhaolo and X. Xia, Optimal scheduling of household appliances with a battery storage system and coordination. Energy Build, pp.61-70, 2015.

B. P. Esther and K. S. Kumar, A survey on residential Demand Side Management architecture, approaches, optimization models and methods, Renewable and Sustainable Energy Reviews, vol.59, pp.342-351, 2016.
DOI : 10.1016/j.rser.2015.12.282

M. Rasheed, N. Javaid, M. Awais, Z. Khan, and U. Qasim, Javaid, Q. Real Time Information Based Energy Management Using Customer Preferences and Dynamic Pricing in Smart Homes, Alrajeh, N.; Iqbal, Z, vol.9, p.542, 2016.

A. Dolara, F. Grimaccia, G. Magistrati, and G. Marchegiani, Optimization Models for Islanded Micro-Grids: A Comparative Analysis between Linear Programming and Mixed Integer Programming, Energies, vol.28, issue.2, p.241, 2017.
DOI : 10.1016/j.enconman.2016.05.022

A. Ahmad, A. Khan, N. Javaid, H. M. Hussain, W. Abdul et al., Azim Niaz, I. An Optimized Home Energy Management System with Integrated Renewable Energy and Storage Resources, p.549, 2017.

M. Ghiassi, D. K. Zimbra, and H. Saidane, Medium term system load forecasting with a dynamic artificial neural network model, Electric Power Systems Research, vol.76, issue.5, pp.302-316, 2006.
DOI : 10.1016/j.epsr.2005.06.010

D. Ali, M. Yohanna, M. I. Puwu, and B. M. Garkida, Long-term load forecast modelling using a fuzzy logic approach, Pacific Science Review A: Natural Science and Engineering, vol.18, issue.2, pp.123-127, 2016.
DOI : 10.1016/j.psra.2016.09.011

H. J. Sadaei, F. G. Guimarães, C. J. Da-silva, M. Hisyam-lee, and T. Eslami, Short-term load forecasting method based on fuzzy time series, seasonality and long memory process, International Journal of Approximate Reasoning, vol.83, pp.196-217, 2017.
DOI : 10.1016/j.ijar.2017.01.006

G. Byeon, T. Yoon, S. Oh, and G. Jang, Energy Management Strategy of the DC Distribution System in Buildings Using the EV Service Model, IEEE Transactions on Power Electronics, vol.28, issue.4, pp.1544-1554, 2013.
DOI : 10.1109/TPEL.2012.2210911

M. Rana and I. Koprinska, Forecasting electricity load with advanced wavelet neural networks, Neurocomputing, vol.182, issue.182, pp.118-132
DOI : 10.1016/j.neucom.2015.12.004

S. Barak and S. S. Sadegh, Forecasting energy consumption using ensemble ARIMA???ANFIS hybrid algorithm, International Journal of Electrical Power & Energy Systems, vol.82, pp.92-104, 2016.
DOI : 10.1016/j.ijepes.2016.03.012

G. Liao and T. Tsao, Application of fuzzy neural networks and artificial intelligence for load forecasting, Electric Power Systems Research, vol.70, issue.3, pp.237-244, 2004.
DOI : 10.1016/j.epsr.2003.12.012

A. E. Clements, A. S. Hurn, and Z. Li, Forecasting day-ahead electricity load using a multiple equation time series approach, European Journal of Operational Research, vol.251, issue.2, pp.522-530, 2016.
DOI : 10.1016/j.ejor.2015.12.030

R. ?. Jovanovi´cjovanovi´c, A. A. Sretenovi´csretenovi´c, and B. D. ?ivkovi´c?ivkovi´c, Ensemble of various neural networks for prediction of heating energy consumption. Energy Build, pp.189-199, 2015.

K. Kavaklioglu, H. Ceylan, H. K. Ozturk, and O. Canyurt, Modeling and prediction of Turkey's electricity consumption using Artificial Neural Networks. Energy Convers. Manag, pp.2719-2727, 2009.

B. Yuce, M. Mourshed, and Y. Rezgui, A Smart Forecasting Approach to District Energy Management, Energies, vol.2, issue.8, 1073.
DOI : 10.3390/en7041935

A. Azadeh, M. Saberi, and O. Seraj, An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: A case study of Iran, Energy, vol.35, issue.6, pp.2351-2366, 2010.
DOI : 10.1016/j.energy.2009.12.023

D. K. Chaturvedi, A. P. Sinha, and O. P. Malik, Short term load forecast using fuzzy logic and wavelet transform integrated generalized neural network, International Journal of Electrical Power & Energy Systems, vol.67, pp.230-237, 2015.
DOI : 10.1016/j.ijepes.2014.11.027

R. Mamlook, O. Badran, and E. Abdulhadi, A fuzzy inference model for short-term load forecasting, Energy Policy, vol.37, issue.4, pp.1239-1248, 2009.
DOI : 10.1016/j.enpol.2008.10.051

C. Torrini, F. Castro-souza, R. Oliveira, F. L. Moreira-passanha, and J. , Long term electricity consumption forecast in Brazil: A fuzzy logic approach, Socio-Economic Planning Sciences, vol.54, pp.18-27, 2016.
DOI : 10.1016/j.seps.2015.12.002

A. L. Berlad, F. J. Salzano, and J. Batey, On enthalpy management in small buildings, Energy, vol.1, issue.4, pp.429-443, 1976.
DOI : 10.1016/0360-5442(76)90071-2

G. Lobaccaro, S. Carlucci, and E. Löfström, A Review of Systems and Technologies for Smart Homes and Smart Grids, Energies, vol.22, issue.5, p.348
DOI : 10.1016/j.enbuild.2016.05.023

G. Strbac, Demand side management: Benefits and challenges, Energy Policy, vol.36, issue.12, pp.4419-4426, 2008.
DOI : 10.1016/j.enpol.2008.09.030

D. Setlhaolo and X. Xia, Combined residential demand side management strategies with coordination and economic analysis, International Journal of Electrical Power & Energy Systems, vol.79, pp.150-160, 2016.
DOI : 10.1016/j.ijepes.2016.01.016