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Abstract: Electricity demand shifting and reduction still raise a huge interest for end-users at the
household level, especially because of the ongoing design of a dynamic pricing approach. In particular,
end-users must act as the starting point for decreasing their consumption during peak hours to
prevent the need to extend the grid and thus save considerable costs. This article points out the
relevance of a fuzzy logic algorithm to ef�ciently predict short term load consumption (STLC).
This approach is the cornerstone of a new home energy management (HEM) algorithm which is
able to optimize the cost of electricity consumption, while smoothing the peak demand. The fuzzy
logic modeling involves a strong reliance on a complete database of real consumption data from
many instrumented show houses. The proposed HEM algorithm enables any end-user to manage
his electricity consumption with a high degree of �exibility and transparency, and �reshape� the
load pro�le. For example, this can be mainly achieved using smart control of a storage system
coupled with remote management of the electric appliances. The simulation results demonstrate that
an accurate prediction of STLC gives the possibility of achieving optimal planning and operation of
the HEM system.

Keywords: demand side management; electricity consumption prediction and management; fuzzy
logic algorithm; individual housing

1. Introduction

The need in electricity generation and management continues to increase each year. This growth is
primarily the result of the rapid increase in the world’s population and the upward trend in the number
of electronic devices (that usually are connected objects) per person. World electricity consumption
could signi�cantly increase in the near future. According to the latest estimations from the international
energy agency (IEA), the world electricity consumption is expected to increase by 75% between 2007
and 2030 (from 19.756 TWh to 34.292 TWh) [1].

Faced with this situation, end-use customers must change their consumption patterns,
because power plants have limited capacity, and peak times of electricity use during the day can
strain the grid. The objective is not only to reduce the electrical energy consumption, but also to
shift it to a different time period. A recent report of EURELECTRIC, the �voice� of the electricity
industry in Europe, has underlined several implicit demand response schemes. One of the common
options consists of implementing dynamic pricing in the electricity supply [2]. The aim is to charge
households various prices throughout the day based on wholesale costs, which might encourage them
to shift their electricity usage from high price to low price hours, thus reducing their expenditures,
and leading the least ef�cient power plants to stop production [3]. Such an approach currently exists
for residential consumers only in the Nordic (e.g., in Finland, Norway, and Denmark), Estonian,
and Spanish electricity markets. However, the problem is that load shifting can generate peak demand
at the beginning of low peak hours, especially if many appliances are shifted to start at the same time.
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The management of electricity consumption has quickly become a priority for companies in
numerous sectors of activities because of their high electricity consumption. The proposed solutions
are now fully �edged and mature [4�6]. Electricity consumption management in individual housing
is equally crucial to warrant the balance between supply and demand of electric power. Today,
the concept of smart home energy management is widely discussed [7]. In particular, many systems,
based for instance on load control in an ef�cient way, have been evaluated. Some authors have recently
introduced an innovative system both to reduce electricity cost and minimize user inconvenience [8].
Other writers have also proposed smart systems in charge of communicating directly and interacting
with the consumers to minimize the peak demand [9]. In all of these examples, electricity end-users
must be more proactive in managing their own consumption, especially by using home automation to
shift the load in a smart way or starting their devices themselves at the best time [10].

Another approach of smart home electricity management is composed of two parts. The �rst one,
which is the most used, consists of adding a smart plug for each appliance. These smart plugs enable
load control in individual housing to either erase the electricity consumption or postpone the operation
and consequently, shift the power consumption. The second one consists of using a storage system
(e.g., batteries, �ywheels, hydrogen or fuel cells). This storage system is used both to postpone the
consumption seen by the electricity supplier and save money by recharging the storage system in
off-peak hours. Such a method requires the implementation of an algorithm, which is both versatile
and totally transparent for the end-users, to predict the electricity consumption [11�14]. Knowing the
total electrical energy used by the consumer, a storage system could so be selected.

The electricity consumption management system proposed in this article takes into consideration
dynamic electricity rates and user inconvenience. The ultimate challenge is here to �nd the best ratio
both to minimize users’ constraints and maximize the reduction of electricity cost. The manuscript
proposes the following main contributions:

1. A fuzzy logic algorithm to ef�ciently predict the electricity consumption day-to-day in individual
housing. The modeling requires a complete database of real electricity consumption from many
instrumented show houses.

2. A new home energy management (HEM) algorithm, which implements the fuzzy logic short
term load consumption, used both to minimize the cost of electrical energy consumption and to
smooth the peak-demand.

This article is composed of three main sections. In Section 2, the methodology used to model
electricity consumption and management is described. In Section 3, the fuzzy logic as the most
appropriate method to predict short term load consumption (STLC) is explained. Many simulation
results are discussed to prove the relevance of such an approach. Section 4 proposes a new HEM
algorithm which is based on the fuzzy logic STLC prediction. Many simulation results are discussed
to demonstrate the possibility to decrease the cost of electricity consumption, while at the same time
smoothing the peak demand.

2. Methodology

2.1. System Modeling

A simpli�ed illustration of a smart house is shown in Figure 1. A smart home can be composed of
a storage system, sensors such as temperature or presence sensors, and switches used to turn on/off
appliances [15�18]. Moreover, smart plugs are used to control the AC loads. They are primarily
in charge of erasing the electricity consumption. It is important to note that the storage system is
supposed to be controlled in an ef�cient way to shift the consumption. The dwelling is powered by
the electricity supplier. From a literature review, in most cases, the electricity is both generated by the
grid and photovoltaic systems and/or wind turbines [19,20].
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Figure 1. Simpli�ed illustration of the proposed smart home.

The manuscript focuses only on the user interface or smart system which is responsible for both
the optimization of the cost of electricity consumption, and, at the same time, peak demand smoothing.
To optimally adjust the users’ preferences and achieve their complete satisfaction, it is proposed to
classify all appliances. This classi�cation is divided into �exible, in�exible, and night loads. The Home
Electricity Management System (HEMS) uses real consumption databases and external parameters
(i.e., electricity rates and temperature sensors). Experimental measurement requires three temperature
sensors, with one outdoor, one in the bedroom and one in the living room.

The HEMS is composed of an electricity consumption prediction model (see Section 3.3) useful to
better use the storage system, and switch the devices on and off in an intelligent way. The prediction
horizon is on a day-to-day basis. The prediction accuracy particularly changes between houses
equipped with temperature-dependent devices (i.e., electric heating or air conditioning).

Finally, the main constraints of the system proposed are: appliance classi�cation, users’
preferences, and an optimal management of the storage system. It is important to note that the
whole system described in this article is totally modular. It means that any electrical device can easily
be added or removed. Similarly, the classi�cation of loads is not �xed and users’ preferences can
be modi�ed.

2.2. Experimental Procedure

2.2.1. Measurement of Electricity Consumption

All consumption and temperature data used in this paper were obtained with a programmable
logic controller (PLC) from the manufacturer named WAGO.

The PLC is used to build a database of real load electricity consumption. It was mainly chosen
because of its modularity. Each module can independently be recon�gured. To carry out the
experimental measurements, the PLC is composed of:

� Nine power measuring 3-phase terminals.
� One terminal with four 24 V dc input digital channels.

In order to get complete temperature databases, three acquisition modules are used.
One temperature sensor is located in the bedroom, one is positioned in the living room, and the last
one is located outside the house.
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To build a model of each load, knowledge of load-per-load consumption is of utmost importance.
Figure 2 shows how the connections were made to measure the electricity consumption.

Figure 2. Example of wiring of the measurement system in the electric panel of a smart home.

2.2.2. Electricity Consumption Monitoring in Reference Houses

Five dwellings were monitored to build a complete database of load electricity consumption.
Table 1 gives the mean features of the houses. In all instrumented houses, electricity is provided by the
largest electricity supplier in France. It is important to note that consumption depends on the season of
the experimentation. For example, from Table 1, 89% of the consumption of the house No. 1 is due to
electric heating which is not used over the summer period.

Table 1. Main features of the reference houses.

House
Type
No.

House
Type

Surface
Area (m2)

Small Appliances
Consumption

(Wh/Day)

Consumption of
Energy-Inef�cient

Appliances
(Wh/Day)

Monthly
Invoice *
(Euros)

Season of the
Experimentation

1 House 130 2773 38,190 170 Winter
2 Apartment 50 1701 2708 15.6 Autumn
3 Apartment 35 2566 6084 26.8 Autumn
4 House 100 3783 5483 39 Summer
5 House 150 11,942 45,847 244 Winter

* The monthly invoice is estimated using Equation (2).

Flexible loads, such as washing machine, dryer, dishwasher, electric heater, fridge, and oven,
are de�ned by the users. The degree of load �exibility (FLR) ranges from 12% to 93%. The �exible
power demand is calculated as shown in Equation (1).

FLR = åN
t=1 Y f lexibility

t

åN
t=1 Yt

(1)

� N: Number of samples.
� Yt: Real power demand for time t (W).

� Y f lexibility
t : Flexible power demand for time t (W).
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Ec =
N

å
t=0

(Yt.Dt.Ct)
3, 600, 000

(2)

� Yt: Cost of electricity (Euros).
� N: Number of sampling.
� Yt: Real power demand for time t (W).
� Dt: Duration between two samples (s).
� Ct: Cost of the electricity at time t (Euros/kWh).

Without the electric heating, the load �exibility rate decreases signi�cantly. For example, from
Table 2, for the �rst reference house (house type No. 1), this ratio decreases from 93% to 4%. This is
mainly due to the heating mode i.e., electric heating, which represents 89% of the global consumption.

Table 2. Review of �exible loads in instrumented houses.

House Type No. Heating Mode Load Flexibility
Rate (%)

Load Flexibility Rate
without Electic Heating (%)

1 Electric 93 4
2 Gas and electric 12 8
3 Electric 32 30
4 Gas 25 25
5 Electric 84 29

2.3. Load Curve Modeling

2.3.1. Methodology

A load curve is a graphical representation of an electrical variable as a function of time.
In this paper, real curves are measured thanks to the system presented above. The power (in watts)
is measured each minute on various loads. The aim of this study is to extract a model for each
load. These models are of utmost importance to better optimize electrical energy consumption.
Two examples are expressly given in the next paragraphs: a fridge and a washing machine.

An important objective to manage any household appliance is to get a better understanding both
of its consumption pro�le, and capacity to change (shiftable, interruptible or neither one). As can be
seen in Figure 3, the procedure for identifying models may depend on the category of the device:

� Cycle and time-limited operation.
� Continuous cycle operation (type ON/OFF).
� No cycle (Computer, TV etc.).

Figure 3. Cont.
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Figure 3. Finite state models: (a) two states model e.g., electric heating, toaster; (b) two operating
modes appliances, e.g., lamp; (c) multiple states appliances e.g., devices on battery (with battery in
charge/loaded battery); (d) multiple states and paths, e.g., oven, washing machine, dishwasher.

Cycle and time-limited operations can easily be shiftable in time, but they cannot be considered
as interruptible. Continuous cycle operation can also be shiftable and interruptible, but with a narrow
range. Finally, devices which have no cycle are shiftable and interruptible.

2.3.2. Example of Modeling for a Fridge

The �rst kind of load studied is a fridge which is an on/off operating load as shown in Figure 4.
This kind of load operates typically during a period of 3 h (called on-period), and shuts down
during 4 h (off-period). Its curve can so be modeled by a squared signal. The on and off-periods
depend on the fridge model, its thermal insulation (if someone opens it) etc. Measurements
give the necessary information to classify the fridge electricity consumption as a continuous cycle.
As described previously, continuous cycle operation can be shiftable and interruptible, but with
a narrow range. The fridge can be disconnected from the grid, but only for a few minutes because of
its internal temperature which must be maintained at a low temperature. The off-duration depends on
the manufacturer because of the quality of the thermal insulation.

Figure 4. Example of power demand for a fridge.

2.3.3. Example of Modeling for a Washing Machine

The power demand of a washing machine is shown in Figure 5. In terms of electricity consumption,
this load has a cyclic behavior. Its operation depends on three elements: a drum, a heating resistance,
and a pump. So, its load curve is composed of three parts. The �rst one is the consumption of the
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heating resistance necessary to heat the water. The second one represents the pump operation during
the rinse cycle. The last one represents the in�uence of the spin cycle.

Figure 5. Example of power demand for a washing machine.

Many experimental measurements allowed the behavior of the washing machine energy
consumption to be classi�ed as a cycle and time-limited operation. This kind of power demand
can easily be shiftable in time, but it is not interruptible. Therefore, to save money, it is important to
shift the washing machine to start up in off-peak time. However, from Figure 5, the �rst cycle requires
a power higher than 2000 W. So, the washing machine startup must be performed in a smart way
because of the high-power demand at the beginning of the washing cycle.

2.3.4. The Importance of Sampling

One of the most important parameters to be optimized is the sampling period. Many experiments
highlighted that a sampling period of 10 min leads to an estimated electricity consumption higher
than 5% in comparison with a sampling period equal to 1 min (see Figures 6 and 7). This error in the
prediction could be acceptable. However, with a sampling period of 10 min, a few spikes in power
demand are not visible. So, it may be dif�cult to characterize accurately the pro�le of the power
demand. This is the reason why a sampling period of 1 min was chosen.

Figure 6. Example of power demand of a house with sampling equal to 10 min.
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Figure 7. Example of power demand of a house with sampling equal to 1 min.

3. Short Term Prediction of Load Consumption

3.1. Foreword

The strategic part of the electricity management system proposed in this article is the electricity
consumption prediction that enables the quantity of harvested energy to be increased. Load forecasting
has always played an important role in the planning operation. Arti�cial intelligence techniques
are used in the prediction system. In load forecasting, the prediction is typically divided into short
term load forecasting (STLF), medium term load forecasting (MTLF), and long term load forecasting
(LTLF) [21�23]. LTLF is widely used today to decide when it is necessary to upgrade existing electricity
distribution systems and build new lines or substations. MTLF is intended to predict the power demand
in advance for a few weeks or months. It is mostly used to predict seasonal changes. STLF is useful to
provide information to the electricity management system on day-to-day or hour-to-hour operations.

Nowadays, STLF has an important place in many operations such as real-time generation control
(to balance supply and demand), security of the distribution system, and energy transaction scheduling.
That is the reason why, this method was chosen to build the prediction model.

3.2. Main Inputs to Build the Prediction Model

Most prediction models have several inputs, such as the position of the day
(weekday/weekend/holyday, month and/or season), temperatures, and load databases [24].

The accuracy of the prediction model relies not only on the method used to calculate the load
consumption, but also the inputs. As can be seen in Figure 8, the prediction system is composed of
six main inputs: day, time, past electricity consumption, past inside and outside temperatures, and
predicted temperatures. In the next paragraphs, the importance of these inputs is expressly discussed.

Figure 8. Diagram of the electricity prediction system.
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3.2.1. Input 1: Time

The most important input is time. As can be seen in Figure 9, the power demand changes most
obviously during the day. In most cases, two peak demands are particularly visible. The �rst one
occurs during the morning between 7 a.m. and 8 a.m. The second one happens at the end of the day
between 5 p.m. and 7 p.m.

Figure 9. Example of electricity demand depending on time (house with 4 inhabitants).

3.2.2. Input 2: Day

For most people, the week is divided into two parts. The �rst one begins usually on Monday,
and ends on Friday. The second one is the week-end from Saturday to Sunday. The experimental
measurements exhibited that users’ habits do not change daily during the �rst part of the week.
However, the energy consumption between week and weekend is rarely the same. That is the reason
why the prediction system divides the week into two parts (see Figure 10).

Figure 10. Division of the input 2 (day).

3.2.3. Input 3: Past Electricity Consumption

The global consumption of a house is typically composed of two parts: a constant energy
consumption, and a variable one. The constant part is due to standby losses (e.g., TV decoder,
internet box, etc.). Therefore, it may be estimated knowing all appliances connected to the grid for the
dwelling. The variable electricity consumption is more dif�cult to calculate. Indeed, it depends on the
users’ habits (for instance, the start of the vacuum cleaner or the oven etc.).

As a consequence, a learning phase is essential. It means that a complete database of experimental
measurements is mandatory to better anticipate users’ habits. The more the measurement database is
re�ned, the more the prediction system is aware of users’ habits.
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3.2.4. Inputs 4 and 5: Past Temperatures

Another important input is the difference between the inside temperature and the outside one.
The experimental measurements were carried out particularly to extract the relationship between the
electricity consumption of a house, and the outdoor-indoor temperature mismatch. As can be seen
in Figure 11a, the electricity consumption of a house without electric heaters does not depend on
the temperature mismatch. Figure 11b gives the electricity consumption of a house equipped with
electric heaters. A complete campaign of experimental measurements was carried out in 10 dwellings.
In these 10 instrumented houses, seven were equipped with electric heaters and 40% to 80% of the
electricity consumption is due to electric heating. This campaign demonstrated a signi�cant difference
in power demand between dwellings equipped with electric heaters, and those without electric heating.
In all cases, a strong temperature dependence of the power demand was visible.

Figure 11. Relationship between electricity demand, and the difference between the outside and inside
temperatures of the house. (a) Without any electric heater. (b) With several electric heaters.

3.2.5. Input 6: Predicted Temperature

To better predict the electricity consumption, the modeling requires to know the indoor and
outdoor temperatures for the forecasted day. For the outdoor temperature, the prediction system is
connected to a statistical tool dedicated to climatology (for example, �meteo France�), and downloads
the appropriate databases. For the indoor temperature, there are two possibilities as described
in Equation (3).
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Temperature (Day(i + 1)) =

(
Temperature(Day(i)), i f no user in f ormation
User choice, i f user has in f ormed the system

(3)

3.3. The Fuzzy Logic as a Versatile Method Used to Predict Electricity Consumption

Existing prediction models use typically mathematical models, such as arti�cial neural networks
(ANN), auto regressive integrated moving average (ARIMA), fuzzy neural network, time series,
or advanced wavelet neural network (AWNN) [25�29]. Many operations such as electricity generation
control, energy planning, and security studies are based on STLF. Table 3 gives particularly
a comparison between the ANN, ARIMA, and fuzzy logic methods used for STLF [30�36]. A review of
literature highlights that the fuzzy logic approach is both suf�ciently ef�cient and versatile to meet
the expectations de�ned at the beginning of the article. Indeed, mathematical models meet a major
obstacle in the prediction of load consumption because of the non-linear relationships between the
inputs (past load, past and predicted temperatures) and the output (predicted load). Such methods are
also usually computationally expensive, many convergence issues are reported in the literature.

Figure 12 gives an example of fuzzy logic implementation. The de�nition of fuzzy rules is
an important part to optimize the prediction. The fuzzy logic method offers a new approach with a logic
table composed of �If-Then� rules, such as �If temperature is low�, then �electricity consumption
is high�. The fuzzy logic method appears to be a great way to predict electricity consumption,
because human behavior can be considered as random, and at the same time, foreseeable.

The prediction system based on the fuzzy logic method is composed of the following steps:

1. The fuzzi�cation used to convert the digital inputs into fuzzy inputs.
2. The fuzzy rules necessary to stem from a learning phase to get a better understanding of the

users’ habits.
3. The fuzzy inference which uses the table of rules to �nd the electricity consumption.
4. The defuzzi�cation used to convert the fuzzy values into digital values.

Figure 12. Block diagram of a fuzzy logic system dedicated to STLF.
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Table 3. Relevance of the fuzzy logic method in comparison with the ANN and ARIMA mathematical approaches.

Model ANN ARIMA Fuzzy Logic

Study [30] [31] [12] [32] [26] [33] [34] [35] [36]

Prediction basis Yearly Daily Daily Daily Yearly Monthly Hourly Daily Yearly

Scope of the prediction Country
(Turkey)

Country
(Ireland)

Region
(USA)

Country
(Greece)

Country
(Iran)

Country
(Iran)

Substation
(India)

Country
(Jordan)

Country
(Brazil)

Operating mode

� Relationship between the input and the output based
on a few dozen to millions of arti�cial neurons
arranged in a series of layers.

� Neurons’ connections represented by a weight. The
higher the weight, the more the in�uence of a neuron
is important.

� A feedback learning process (backpropagation)
is mandatory.

� Prediction based on a weighted sum of past values
and/or past errors.

� The future value of a variable is assumed to be a linear
function depending on past values and errors.

� A learning phase, which is based on model
identi�cation, parameter estimation and diagnostic,
and validation, is mandatory.

� 4 main steps: fuzzi�cation, de�nition of fuzzy rules,
inference system de�nition, and defuzzi�cation.

� A learning phase is mandatory. It consists of changing
the fuzzy rules in relation to the database of
real measurements.

Advantages

� Adaptability, robustness, and reliability of the method
depending on the source, range, quantity, and quality of
a given data set (even with a small linear or non-linear
data set).

� Effectiveness of the method even with noisy data.

� Statistical method which is very useful to predict short
term time series.

� The method only requires the prior data of time series
to generalize the prediction.

� Possibility to increase the prediction accuracy, while
minimizing the number of parameters.

� Possibility to convert a large amount of data into a
smaller set of rules from the inference system.

� Ability to take into consideration human intuition and
experience, because the method is based on heuristics.

� Versatility of the method, because the fuzzy rules and
membership functions can easily be reshaped.

Drawbacks

� Dif�culty in selecting a good structure of ANN, type of
neuron, and training time.

� Complete database mandatory to get suitable results.
� Convergence issues.
� Usually computationally expensive modeling.

� Well suited for linear functions.
� Stationarity is a necessary condition in building an

ARIMA model which is useful for forecasting.
� Usually computationally expensive modeling.

� Dif�culties in estimating the appropriate number of
membership functions to optimize the learning period.

� Membership values must be ranged between 0 and 1
not to give the same importance to all factors.
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One key element of the fuzzy logic approach is the de�nition of the membership functions.
As can be seen in Figure 13, one example is given for the �rst input (i.e., time). From the experimental
procedure, it is possible to get a complete database of the electricity consumption for the main electric
devices in individual housing. From this database, it is possible to extract the mean useful duration in
most appliances. In particular, it appears that most of the useful durations were a multiple of 30 min.
So, time (the �rst input of the model) is divided into 48 triangular functions (each one lasts 30 min).

Figure 13. Example of triangular membership functions for the �rst input of the model (Time).

Using the same method as described above, the other inputs are divided into:

� Input 2 (day): two intervals (trapezoidal membership functions).
� Input 3 (past electricity consumption): 299 intervals (triangular membership functions).
� Input 4 and 5 (past temperatures): eight intervals (trapezoidal membership functions).
� Input 6 (predicted temperature): eight intervals (trapezoidal membership functions).

The more the number of intervals is high, the more the users’ habits are taken into consideration,
whatever the inputs. Several simulation results highlighted that the accuracy of the prediction
modeling can particularly be improved by changing the number of intervals for input 2 (day).
The strategy consists of optimizing the division of input 2 based on a complete study of human behavior.
When its membership functions are divided into seven parts (it means that each day is considered
independently), the users’ habits are better taken into consideration. However, a measurement period
of at least three weeks is mandatory to build an exploitable database. When the membership functions
are composed of two intervals, a database of one week is satisfactory.

To illustrate what this means, the root mean square error (RMSE) is de�ned (see Equations (4)
and (5)). This parameter is frequently used to measure the differences between values predicted
by the modeling and real values (i.e., from a measurement procedure). Figure 14 shows that the
RMSE-parameter decreases when the membership functions of the second input (day) are composed
of two parts instead of seven parts.

Et = Yt � Ft [W] (4)

RMSE =

s
åN

t=1 E2
t

N
[W] (5)

� Et: Prediction error for time t.
� Yt: Real power demand for time t.
� Ft: Predicted power demand for time t.
� N: Number of samples.
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Figure 14. Root Mean Square Error comparison for input 2 (day).

Regarding the fuzzy logic diagram (see Figure 12), another important step consists of determining
the fuzzy rules. Those rules, which are involved in the fuzzi�cation and defuzzi�cation processes,
are de�ned during the learning period. The split of the input 1 (time), input 2 (day), and inputs 3
and 4 (temperature mismatch) into 48 intervals, 7 intervals, and 8 intervals respectively leads to 2688
possibilities. So, the table of rules is composed of 2688 h/Day/DT combinations. The rules are stored
in terms of �If-Then� rules such as:

� If (DT is �LM�) and (DAY is �WEEK�) and (TIME is �H10�), then (Load is �LOW140�).
� If (DT is �MHNM�) and (DAY is �WEEKEND�) and (TIME is �H10�), then (Load is �HIGH52�).

For each input, the more the number of interval is high, the more the prediction is accurate.
Due to the increase of fuzzy rules’ possibilities, the increase of membership functions leads to the
increase of Hour/Day/DT combinations. The more the number of combinations is important, the more
the duration to meet an acceptable prediction (i.e., error rate less than 5%) is important. However,
the number of membership functions does not change the computation time. Conversely, as can be
seen in Equation (6), this calculation time depends directly on the number of days.

computation time = 0.0012 � Number o f days + 0.0591 [s] (6)

3.4. Relevance of the Fuzzy Logic Approach : Example of Results

Figure 15 gives an example of prediction result for the house No. 1. In this case, the sampling
period was equal to 1 min. The power demand was calculated for 1 day. During this period of
time, the real electrical energy consumption and the modeled one are about 42.3 kWh and 38.2 kWh,
respectively. So, the prediction results are very close to the measurements. It is important to note that
the prediction algorithm is based on the estimation of an average consumption. Using the model,
it is possible to predict the peak demand of a few loads such as water heaters, because these kinds
of loads operate at the same time each day. However, regarding on/off behaviors such as heaters,
the peak demand cannot easily be predicted, because their operation is directly in relation to the
temperature mismatch.
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Figure 15. Example of an electricity consumption prediction for 1 day (house No. 1, 3 inhabitants,
130 m2, electric heating, sampling period equal to 1 min).

4. Energy Management: Examples of Results and Discussion

4.1. New HEM Algorithm Proposal

In the previous section, the prediction algorithm based on the fuzzy logic approach enabled to
better identify the users’ habits in terms of average electricity consumption. Regarding the simpli�ed
schematic of the smart home (see Figure 1), it is now very important to de�ne the best way to use the
storage system. In particular, its role is �rst and foremost to smooth peak demand. As a consequence,
an ef�cient energy management algorithm is mandatory.

At the moment, HEMS plays an important role in response to the global warming effect. Since its
�rst use in 1976, the topic has been widely discussed both in higher education and by companies [37].
Any energy management system can be achieved at the global, national, residential, or tertiary level.
Today, the global and national management systems are greatly developed. The residential area is
a growing market segment, particularly because of the increase of the level of pricing by the electricity
suppliers. So, a smart electrical energy management system can offer a signi�cant advantage today.
New systems and technologies for home automation represent two key elements to support the
development of an energy management system [38].

The HEMS enables optimal use of electricity to be de�ned, and helps both to reduce peak demand,
and users’ electricity bills [15,39]. Numerous HEMSs are reported in the literature. They are based on
existing algorithms. Most basic management systems are built to shift the consumption during off-peak
time through the control of a storage system. Figure 16 gives an example of a basic �owchart [38].

In this section of the paper, a HEMS with the prediction of electricity consumption is compared
with a HEMS without any prediction system. In particular, a new algorithm is discussed.

Figure 17 gives the simpli�ed �ow chart of the new algorithm. The proposed system is based on
the management of the storage system in an ef�cient way, and the possibility to turn on/off appliances
to save electricity and consequently, to decrease the cost of electricity consumption. In comparison
with a basic approach, one key element of the proposed HEMS is the use of the prediction of electricity
consumption based on the fuzzy logic method. Thanks to this methodology, it is possible to combine
electricity savings, and the decrease of peak demand.
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Figure 16. Flowchart of a basic HEMS without any STLF algorithm [38].

Figure 17. Simpli�ed �ow chart of the proposed HEMS algorithm that implements both STLF and
peak demand smoothing.

From a literature review, Equation (7) gives an example of the formula used to calculate the cost
of electricity consumption (Ec) [40]. The aim of the algorithm is to get a better understanding of the
way to reduce the Ec-parameter. The in�uence of the shifting of the appliances’ operation is taken into
consideration by the uk

t -parameter (see Equation (8)).

Ec =
T

å
t=1

  
K

å
k=1

Pin f
t +

K

å
k=1

Pk,ngt
t uk,ngt

t +
K

å
k=1

Pk
t uk

t + hbPb
t

!

Ct.Dt

!

(7)

uk
t =

(
1, when the appliance k is on at time named t
0, when the appliance k is o f f at time named t

(8)

� Ec: Cost of the electricity consumption (Euros).
� Ct: Cost of the electricity at time named t (Euros).
� N. : Number of samples.
� hb: Ef�ciency of the storage system.
� Dt. : Duration between 2 points (s).
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From Equation (8), the Pin f
t , Pk,ngt

t , and Pk
t -parameters are directly linked with the classi�cation

of the appliances. In particular, these parameters represent in�exible, night, and �exible loads,
respectively. Table 4 gives an example of such a classi�cation. The �exible loads depend on the users’
choices. The users are encouraged to use night loads, i.e., during off-peak time (from 11 p.m. to 7 a.m.).
The users can also choose in�exible appliances not to ensure any shifting. In the following sections,
the ef�ciency of the storage system (hb) and its converter is supposed to be equal to 95%.

To better �t in with the users’ preference, it is possible to con�gure the system using three inputs:

� The discomfort (Dis) from 0 (0%) to 0.5 (100%).
� The use of the storage system (Su) from 0 (0%) to 0.5 (100%).
� The savings (Cs) from 0 (0%) to 1 (100%).

Equation (9) gives the relationship between these three inputs. In particular, this equation
highlights that the more the discomfort and the use of the storage are important, the greater the
savings are:

Cs = Dis + Su (9)

Table 4. Example of classi�cation of the electrical appliances in a smart home [8,34].

Appliances Type Flexibility
Classi�cation

Flexibility Time
(min)

(Assumption)

Rated
Power
(kW)

Time-of-Use
(Average Duration)

Washing Machine C * N ** �120 2.5 48 weeks/year�4 times a week
Dishwasher C * N ** �120 1.2 48 weeks/year�5 times a week

Dryer C * F ** �30 2.75 32 weeks/year�2 times a week
Fridge C * F ** �5 0.25 365 days/year

Electric oven C * F ** �15 2.25 48 weeks/year�1.5 h/week
Electric vehicle C * F ** �120 3 9 h/recharge
Electric heater C * F ** �30 1.5 100 kWh/year/m2

Water heater C * F ** �120 2.2 365 days/year�70 min/day
Microwave NC * I ** - 1.25 48 weeks/year�1.5 h/week

Coffee maker NC * I ** - 0.60 335 days/year�10 min/day
Hair dryer NC * I ** - 0.5 48 weeks/year�30 min/day

C *: controllable load; NC *: non-controllable load. N **: night load; F **: �exible load; I **: in�exible load.

4.2. Examples of Simulation Results

The management strategy may be divided into two parts. The �rst one is dedicated to the control
of the loads. The second one deals with the use of the storage system in an ef�cient way. Both cases
are described in this section of the manuscript.

4.2.1. Smart Control of the Loads

One of the possibilities to avoid electricity waste is to optimize the operation of electric heaters.
One example may consist in stopping such electrical devices during the 15 min before the off-peak
period. Figure 18 gives an example of a simulation result. It is important to remember that the
behavior of such heating systems strongly depends on the outdoor-indoor temperature mismatch.
This switch off duration does not disturb signi�cantly the users, because the temperature mismatch
decrease is not so important.



Energies 2017, 10, 1701 18 of 24

Figure 18. Example of electricity management of an electrical heater.

A second possibility to avoid electricity waste may consist of shifting the electricity consumption
in off-peak time. For example, it is possible to postpone the start of some electrical appliances using
a smart plug. In particular, as can be seen in Figure 19, the aim is to start the devices at appropriate
times to limit peak demand. When those electrical appliances cannot be equipped with any smart
plug, the manufacturers of the equipment offer most often the possibility to activate an option to shift
the start-up. The bene�ts are obviously the same.

Figure 19. Example of electricity management of 2 electrical devices: real power demand (from
measurements) (a). Power demand after a smart control of the loads (b).

For instance, based on a literature review, it is possible to estimate the cost savings (see Table 5)
after a smart control of a few loads from their average consumption [41]:
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� 288 kWh/year for a dishwasher.
� 192 kWh/year for a tumble dryer.
� 173 kWh/year for a washing machine (A+++-type).

Table 5. Electricity cost savings: bene�ts of a smart management of the electricity consumption.

Electrical Appliances
Electricity Cost without

Management (Euros)
Electricity Cost with a Smart

Management (Euros)

One Cycle Annual One Cycle Annual

Dishwasher 0.1911 45.88 0.1502 36.06
Tumble dryer 0.4779 30.60 0.3756 24.04

Washing machine (A+++-type) 0.1434 27.56 0.1127 21.66

4.2.2. Use of the Storage System in an Ef�cient Way

A new approach is proposed here to control the storage system in an ef�cient way. In this
section of this paper, a new method is described to better manage electricity consumption using the
predictive modeling based on the fuzzy logic approach. In the following simulations, a house with
three inhabitants was considered (home No. 1).

An example of electricity consumption of this house is shown in Figure 20. When the power
demand was higher than 2.6 kW, it was arbitrarily considered as a peak demand. From Figure 20,
and considering the assumption described previously, 269 peaks of consumption are visible.
The storage system must so be controlled in an ef�cient way so as to smooth those peaks.

Figure 20. Power demand for the show house No. 1 (3 inhabitants, 130 m2, electric heating, sampling
period equal to 1 min).

4.3. Discussion

From the various simulation results, the proposed HEM algorithm, which implements the STLF
approach based on a fuzzy logic algorithm, highlights the possibility both to optimize electricity waste,
and decrease the peak demand in a signi�cant manner. In the latter case, the ef�cient control of a storage
system is of utmost importance both to smooth the peak demand, and shift the electricity consumption.

Many simulations were carried out from the features of the �rst show house (see Table 1, house
type No. 1). These simulations were based on a management of the electricity consumption during
1 day, 2 days, and 9 days, respectively. Table 6 exhibits the relevance of the proposed HEM algorithm
in terms of electricity saving, and peak demand reduction. To illustrate the performances of such
an approach, the simulation results are compared with the ones from a basic approach as described in
Figure 16. From Table 6, the decrease of the peak demand is signi�cant when an HEMS is coupled
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with a STLF algorithm in all simulation cases. A basic HEM algorithm does not exhibit such positive
results. Regarding electricity savings, even if a basic HEM algorithm gives acceptable results, the new
algorithm proposed in this manuscript clearly strengthens the expectations.

Table 6. Relevance of the new HEM algorithm implementing the STLF based on the fuzzy logic method,
and, at the same time, peak demand smoothing.

Number of Days
for the

Simulation

Electricity Savings
and Number of Peaks

Before the
Management

After Basic
Management without

Prediction System

After
Management with
Prediction System

1 day Electricity savings 0 17.5% 13.5%
Number of peaks 269 162 0

2 days Electricity savings 0 11.0% 5.0%
Number of peaks 372 253 0

9 days Electricity savings 0 5.0% 4.3%
Number of peaks 2042 1461 342

Figure 21 illustrates the impact of the control of the storage system on the management of the
electricity consumption. Two cases were considered.

The �rst one (see Figure 21a) is based on the use of the storage system at any particular time.
In particular, the storage system is charged during the peak hours (i.e., when the price of electricity is
low). It is discharged without any smart control during off-peak hours (i.e., when the price of electricity
is the highest). In that case, it is not possible to optimize the electricity consumption during the whole
duration of the simulation because the system becomes empty very rapidly.

The second one offers the possibility to control the storage system at appropriate times through the
implementation of the STLF algorithm based on the fuzzy logic method (see Figure 21b). In particular,
the storage system is also charged during peak hours. However, in off-peak hours, it is progressively
discharged. In that case, there are two main positive effects. The power demand of the smart house is
optimized during the whole day. Moreover, most of the peak demand can be smoothed.

Figure 21. Cont.
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Figure 21. Relevance of the proposed HEMS with an appropriate control of the storage system. Without
any STLF algorithm (a). With the STLF algorithm based on the fuzzy logic method (b).

5. Conclusions and Prospects

This article proposed a fuzzy logic method to predict the short term load consumption in
individual housing. To build the model, a complete database of real measurements was necessary.
Several show houses were instrumented to meet this objective. This model represents a real cornerstone
of a new algorithm used both to better manage the cost of electricity consumption in a smart home,
and limit the peak demand.

The main achievements of this study are summed up below:

1. The STLF algorithm based on the fuzzy logic method gave suf�cient results. Many simulation
results highlighted the importance of the database of real measurements to warrant
an accurate prediction.

2. Both simulation and experimental results highlighted the dif�culty to predict STLF when
a dwelling is not equipped with an electric heating.

3. The electricity management system proposed in this manuscript was intended to smooth the peak
demand. This can be mainly achieved using a smart control of the storage system. In particular,
the HEMS allows any user to manage his energy consumption, and �reshape� the load pro�le.
A compromise was �nally highlighted between electricity waste and the reduction of the
peak demand.

4. The HEMS proposed in this article emphasized its strong �exibility in not disturbing the users’
comfort by scheduling home appliances.

The performances of the prediction algorithm may be improved. The existing approach is based
on a day-to-day prediction. It could be interesting to take into consideration the presence of any user
in the smart home to predict STLF hour by hour or minute by minute.
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Abbreviation

The following abbreviations are used in this manuscript:

ANN Arti�cial Neural Networks
AP Appliance
ARIMA Auto Regressive Integrated Moving Average
AWNN Advanced Wavelet Neural Network
FLR Flexibility Load Range
HEMS Home Energy Management System
LTLF Long Term Load Forecasting
MTLF Medium Term Load Forecasting
RMSE Root Mean Square Error
STLF Short Term Load Forecasting
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