L. R. Treolar, The elasticity of a network of long chain molecules 1, Trans Faraday Soc, vol.39, pp.36-64, 1943.

M. Mooney, A theory of large elastic deformation, J Appl Phys, vol.11, pp.582-592, 1940.

R. S. Rivlin, Some topics in ®nite elasticity. 1st Symp Naval Struct Mech, 1958.

L. J. Hart-smith, Elasticity parameters for ®nite deformations of rubber-like materials, J Appl Math Phys, vol.17, pp.608-626, 1966.

R. W. Ogden, Large deformation isotropic elasticity, on the correlation of theory and experiment for incompressible rubber-like solids, Proc Roy Soc A326, pp.565-584, 1972.

B. D. Coleman and W. Noll, Foundations of linear viscoelasticity, Rev Mod Phys, vol.33, pp.239-249, 1961.

G. Lianis, Constitutive equations of viscoelastic solids under ®nite deformation, Purdue University Report, pp.63-74, 1963.

W. V. Chang, R. Bloch, and N. W. Tschoegl, The behaviour of rubber-like materials in moderatly large deformations, J Rheol, vol.22, pp.1-32, 1978.

K. N. Morman, Original contributions. An adaptation of ®nite linear viscoelasticity theory for rubberlike viscoelasticity by use of the generalised strain measure, Rheol Acta, vol.27, pp.3-14, 1988.

A. E. Green and R. S. Rivlin, The mechanics of non-linear materials with memory, Arch Rational Mech Anal, vol.1, pp.1-21, 1957.

B. D. Coleman, Thermodynamics of materials with memory, Arch Rational Mech Anal, vol.17, pp.1-46, 1964.

R. M. Christensen, Theory of Viscoelasticity, an Introduction, 1971.

F. Sidoroff, Variables internes en viscoe Âlasticite Â, II. Milieux avec con®guration interme Âdiaire, J Me Âc, vol.14, pp.571-595, 1975.

L. Tallec and P. , Numerical Analysis of Viscoelastic Problems, 1990.

L. Tallec, P. Rahier, and C. , Numerical models of steady rolling for non-linear viscoelastic structures in ®nite deformations, Int J Numer Methods Eng, vol.37, pp.1159-1186, 1994.

A. I. Leonov, On thermodynamics and stability of general Maxwell-like viscoelastic constitutive equations, Theor Appl Rheol. Proc XIth Int Cong Rheol, 1992.

J. A. Harwood, L. Mullins, and A. R. Payne, Stress softening in rubbers: a review, J IRI, pp.17-27, 1967.

L. Mullins and N. R. Tobin, Stress softening in rubber vulcanizates. Part I: use of a strain ampli®cation factor to describe the elastic behavior of ®ller-reinforced vulcanized rubber, J Appl Polymer Sci, vol.9, pp.2933-3009, 1965.

J. C. Simo, On a fully three-dimensional ®nite-strain viscoelastic damage model: formulation and computational aspects, Comput Methods Appl Mech Eng, vol.60, pp.153-173, 1987.

S. Govindjee and J. Simo, A micro-mechanically based continuum damage model for carbon black-®lled rubbers incoporating Mullins' effect, J Mech Phys Solids, vol.39, pp.87-112, 1991.

S. Govindjee and J. Simo, Transition from micro-mechanics to computationally ef®cient phenomenology: carbon black ®lled rubbers incorporating Mullins' effect, J Mech Phys Solids, vol.40, pp.213-233, 1992.

C. Miehe, Discontinuous and continuous damage evolution in Ogden-type large-strain elastic materials, Eur J Mech A/Solids, vol.14, pp.697-720, 1995.

G. A. Holzapfel and J. Simo, A new viscoelastic constitute model for continuous media at ®nite thermomechanical changes, Int J Solids Struct, vol.33, pp.3019-3034, 1996.

D. S. Malkus, Finite element with penalties in nonlinear elasticity, Int J Num Meth Eng, vol.16, pp.121-136, 1980.

J. T. Oden, A theory of penalty methods for ®nite element approximations of highly nonlinear problems in continuum mechanics, Comput Struct, vol.8, pp.445-449, 1978.

R. Glowinski and P. Le-tallec, Numerical solution of problems in incompressible ®nite elasticity by augmented lagrangian methods; II. three-dimensional problems, SIAM J Appl Math, vol.44, pp.710-733, 1984.

G. Be-Ârardi, M. Jaeger, R. Martin, and C. Carpentier, Modelling of a thermo-viscoelastic coupling for large deformations through ®nite element analysis, Int J Heat Mass Transfer, vol.39, pp.3911-3924, 1996.

F. Sidoroff, Un mode Ále viscoe Âlastique non line Âaire avec con®guration interme Âdiaire, J Me Âc, vol.13, pp.679-713, 1974.

J. T. Oden, Finite Element on Nonlinear Continua, 1972.

G. F. Carey and J. T. Oden, Finite Elements, vol.2, pp.96-166, 1986.

J. T. Oden and N. Kikuchi, Finite element methods for constrained problems in elasticity, Int J Num Meth Eng, vol.18, pp.701-725, 1982.

S. Bonelli, F. Golay, and O. De-Âbordes, Re Âsolution autoadaptative par e Âle Âments ®nis de proble Ámes de diffusion fortement non-line Âaires, Rev Eur Ele Âments Finis, vol.2, pp.495-515, 1993.

G. Be-Ârardi, Mode Âlisation nume Ârique du comportement thermo-viscoe Âlastique d'un e Âlastome Áre en grandes de Âformations, 1995.

C. Carpentier-gabrieli, Mode Âlisation the Âorique et nume Ârique du comportement viscoe Âlastique d'e Âlastome Áres sous sollicitations harmoniques, 1995.

A. Chysochoos, Energy balance for elastic plastic deformation at ®nite strain, J Theo Appl Mech, vol.4, pp.589-614, 1985.

K. K. Kar and A. K. Bhowmick, Hysteresis loss in ®lled rubber vulcanizates and its relationship with heat generation, J Appl Polym Sci, vol.64, pp.1541-1555, 1997.