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A thermo-viscoelastic model for elastomeric behaviour
and its numerical application

A. Boukamel, S. Méo, 0. Débordes, M. Jaeger

Summary This paper presents a model of thermo-mechanical behaviour of viscoelastic elas-
tomers under large strain. A formulation is proposed with a generalisation to large strain of the
Poynting-Thomson rheological model. A finite element formulation is then exposed taking the
incompressibility constraint for mechanical equilibrium into account. On the thermo-
mechanical coupling aspect, an algorithm of time discretisation is proposed with two time
scales corresponding respectively to mechanical and thermal behaviours. Finally, an applica-
tion for the simulation of a double-shearing test is presented with an analysis of parameters’
influence and a comparison between numerical and experimental results.

Keywords Viscoelasticity, Large Strain, Thermomechanical Coupling, Elastomeric Behaviour

1
Introduction
Elastomers are frequently employed in many industrial sectors such as the automobile and
aeronautics industries. Their use has been extended to parts that undergo strong mechanical
and thermal loadings. Since their mechanical properties highly depend on the temperature, the
prediction of the behaviour and the assessment of the fatigue strength of elastomeric pieces,
which are often closely linked to safety, require a local analysis based on a formulation of a
thermo-mechanical model.

In literature, among the phenomena considered in order to analyse the local behaviour of
elastomers under dynamic and thermal loadings, several approaches can be distinguished:

e hyperelastic modelling to characterise the static behaviour of the material;

o nonlinear viscoelasticity to simulate dissipative response and relaxation phenomena;

e micro-mechanical analysis for modelling the softening behaviour under deformation
(Mullins’effect) or damage evolution;

e thermo-mechanical coupling to describe the changes of temperature due to the mechanical
dissipation.

For hyperelasticity, several laws have been proposed which are based on the expression of
strain energy density in isotropic, incompressible materials. Among these laws, statistical
models were carried out with entropic considerations of the molecular chains configurations
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[1]. The other class of models reflects a phenomenological approach deduced from the isotropy
and incompressibility hypothesis, which must be adjusted to experiments, [2-5].

The nonlinear viscoelastic aspects are treated in essentially two phenomenological
approaches:

1. The integral approach using restrictive hypothesis such as the finite linear viscoelasticity
(FLV) theory. This method is based on a modified linear Boltzmann superposition principle
with a nonlinear strain measure. It uses an asymptotic expansion of relaxation functions. The
separability principle between time and strain is expressed by the first term of this expansion,
while the higher order terms constitute a correction, [6, 7]. More recently, several authors have
proposed a modified FLV model introducing a generalised deformation measure, [8, 9]. The
theoretical frame of this approach was essentially developed for nonlinear materials with fading
memory and based on integral formulation of the stress tensor with respect of deformations
history, [10-12].

2. The differential approach is based on the concept of intermediate state commonly used in
describing finite elastic—plastic deformations, [13], and consists in a generalisation to large
strains of classical rheological models, [14-16]. This theory introduces a viscoelastic internal
variable. Its evolution is governed by constitutive laws deduced from thermodynamics of
irreversible processes. This approach appears more adapted to numerical developments than
the integral formulations.

Another important aspect of elastomeric behaviour is the softening effect, experimentally
observed and called Mullins’ effect, [17, 18]. This loss of stiffness in filled rubbers is micro-
mechanically described by the rupturing of the bonds between the rubber matrix and
embedded particles. A phenomenological model of damage and numerical applications are
proposed in [19]. A statistical approach is used for modelling this phenomenon in [20], relating
the damage mechanism to the maximum stretch of the deformation history. In [21], a tran-
sition to a phenomenogical model is proposed for numerical implementation. More recently, an
application of continuum damage mechanics to Ogden-type material was proposed in [22]. The
description of damage accumulation is handled similarly to that in [21] but another variable is
added, which characterises the evolution of free energy during the process.

The dissipative nature of the viscoelastic behaviour involves an internal heat production,
and so a temperature evolution takes place in the material. This thermo-viscoelastic coupling
phenomenon was investigated recently in [23] in order to establish a general framework of
nonlinear thermo-viscoelasticity. In the isothermal case, it is shown that a nonlinear general-
isation of the Maxwell rheological model is obtained. Some guidelines were given to handle
non-isothermal problems, taking the thermo-mechanical coupling into account.

Many works have contributed to the development of mathematical formulations and nu-
merical methods, allowing precise simulations of hyperelastic or viscoelastic materials. In
particular, some finite element (FE) formulations have been largely proposed in literature. They
were adapted to large strain and took the incompressibility constraint into account, using the
penalty method, [24, 25], or an augmented lagrangian method, [26], in order to solve the
equilibrium problem in hyperelasticity. An equivalent procedure was also adopted for non-
linear viscoelasticity with a local treatment of internal variables, [15].

In this paper, we present a thermo-viscoelastic model for large deformation and finite
variations of temperature. Our approach is fully phenomenological and based on the principles
of irreversible thermodynamics. Micro-structural aspects, like interaction between the rubber
components, stress softening phenomenon (Mullins’ effect) or other damaging mechanism are
not considered.

An FE implementation of this model was performed in [27] but restrained to problems with
a uniform dissipation field and no temperature dependence of the mechanical behaviour. In the
present work, we propose a numerical model including, on one hand, sequential and local
coupling algorithm, and on the other hand, a temperature dependence of the mechanical
properties. To our knowledge, no numerical developments for the case of large viscoelastic
strains and large temperature changes have been proposed for this subject.

The physical problem is described firstly with regard to the basic principles of thermo-
dynamics of continuous media adapted to the large deformation theory. A generalisation of a
rheological model is then presented in order to obtain a law governing viscoelasticity, and
finally the thermal equations are written in the Lagrangian configuration.

On the mechanical aspect, a perturbed Lagrangian formulation allows to handle the in-
compressibility constraint. For the thermal problem, a classical variational equation is given.
These two variational forms are associated to FE approximations in order to obtain an explicit



coupling system which will be solved using a two-time scales algorithm according to the
viscoelastic and thermal behaviour respectively.

Finally, this approach is validated by a simulation of a shearing test on a specimen composed
of a two-layer test piece (elastomer/steel). A comparison between the numerical results and
experimental measurements is finally offered and interpreted in terms of numerical and
physical aspects.

2
Description of the physical problem

2.1

Description of the motion

Consider a body occupying the domain Q in the undeformed reference configuration C, and
the domain w in the current configuration C;. The motion of the body from C, to C; is locally
described by the gradient tensor defined as

=, 0x -

FX,t)=—(X,1) , (1)

0X

where X and X define, respectively, the position vector in the reference configuration and in the
current one.

The dilatation tensor or right Cauchy-Green tensor is built from the gradient tensor,
such that

C(X,t)=F -F . 2)

To describe elastoplastic or viscoelastic behaviour in large deformations, an intermediate state
C; is usually introduced which could be interpreted as the locally relaxed configuration, [28].
Thus, we consider the multiplicative decomposition

=F.-F, , (3)

|

where F, defines a pseudo-gradient of the elastic motion, and Fy a pseudo-gradient of the
viscous motion. A viscous and an elastic Cauchy-Green tensors are associated

e — ;r'e~ (4)

The total Cauchy-Green tensor is then given by
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2.2

Thermodynamic formulation

The three conservation laws (mass, momentum and energy) of the classical thermodynamics,
which are locally written in the Lagrangian description, govern the transformation of the system

pdet(F) = py, poii = divII+ pof, poé=T1:F—divQ+ por , (6)

where p, and p are, respectively, the local mass density in Cy and C;, II is the first Piola-
Kirchoff stress tensor, f corresponds to the specific (i.e. per mass unit) body force, e is the
specific internal energy, Q is the Piola-Kirchoff heat flux and r is the rate of heat pro-
duction per unit mass.

In order to be admissible, the thermodynamic process must satisfy the Clausius—Duhem
inequality which states that the total dissipation is positive or equal zero. In the case of a
Lagrangian description this inequality is written as

O=0"+d’ >0 , (7)



_ VLT
o' =-Q- % is the thermal dissipation
and
Y=e¢—Ts, (©)

W is the specific free energy, s the specific entropy and T the absolute temperature.

The first step in the development of the thermodynamic model consists in the choice of a set
of state variables adapted to the problem. For the present study, we add to the usual state
variables (F, T), [28], another one associated to the viscous behaviour of material: the viscous
dilatation tensor

= :T
C,=F, -F, .
So the rate of specific free energy can be written as

¥ 2 Y = .
:6—::F+GT:CV+—T. (10)
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The mechanical dissipation has the following form:
= 0P\ = ¥ = AW
< Po 6F> Po ac. v —Po (5 + 6T> (11)

On the other hand, the thermodynamics of irreversible processes states the existence of a
pseudo-potential of dissipation ¢ such that

on =2,
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3
Constitutive equations

3.1

Mechanical behaviour

The mechanical constitutive equations are determined by the extension to the case of large
deformation of the well-known Poynting-Thomson rheological model Fig. 1.

Let W, and P, define the specific free energies associated, respectively, to the instantaneous
and delayed responses of the material. For these two quantities, the forms of strain energy
corresponding, respectively, to the hyperelastic Hart-Smith model and the neoHookian model
are adopted, [29]

€

I
po¥e = [ crexplaa(rs — 37)dI + caln? (13)

poy = ar(I} - 3) . (14)

Here, I, I§ denote the first and second principal invariants of C. and I} is the first one of C,. The
coefficients ¢, ¢;, ¢3 and a; are material characteristics that must be identified experimentally.
These strain energies are currently used to describe the mechanical behaviour of the hy-
perelastic incompressible media. According to the multiplicative decomposition (3) and the

rheological model, the incompressibility constraint applies both to observable variable F
and internal variable C,
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Fig. 1. Poynting-Thomson model

= = =1
det(F) =1, tr(CV~ C, ) =0 . (15)
The total free energy density of the system is then given by
M,(ﬁ o T) _ ) o (‘PC(F, T) + ¥, (Cy, T)) if det(F) = 1 (16)
otherwise

The pseudo-potential of dissipation ¢ takes the following quadratic form and only depends on

C,, [28]

. = = _ 2
C,) = %W(Cv : Cv> if tr <CV - C, ) =0 (1)

otherwise ,

where 7 is an experimentally identified viscosity parameter.
Substituting (16) an_d (17) in (11) and (12), and for processes, respectively, isothermally,
reversible (T = 0 and C, = 0) and only isothermal, this choice of thermodynamic formulation

leads to the following constitutive laws:
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det(F) =1, tr(éV-EV1> =0.
(18)

In these expressions, the incompressibility constraints (18c) are imposed through the Lagrange
multipliers p and q. _

Left-multiplying equation (18b) by C, and considering only its deviatoric part, the Lagrange
multiplier g disappears and the complementary law becomes

D
= [(0F. W \= W=t =) =
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which will be subsequently summarised by
) =7(tFw. () - (20)

3.2
Thermal behaviour

The Fourier law in the reference configuration gives the Piola-Kirchhoff heat flux
Q=-K ViT(X,1) . (21)

In this relation, the conductivity tensor Ky is expressed in the initial configuration and is given
in [27]

Ki=F -K-F (22)
while K is the usual Eulerian conductivity tensor. It is reduced, in the isotropic case, to K= KT,
where K is the material conductivity factor.

4
Thermo-mechanical model

4.1

Physical problem

As mentioned above, the state of the system is given by the three conservation laws of the
classical thermodynamics.

Under the assumption of a quasi-static evolution, the mass and momentum conservation
laws, added to the hypothesis of incompressibility medium, yield the following equations which
govern the mechanical evolution:
pﬁ:det(ﬁ):l, 0=diviT+ pof VX eQ . (23)

0
This formulation has to be supplemented with the constitutive laws (18), (19).

The heat transfers are governed by the heat equation. It can be derived from the energy

conservation law (6), by introducing the expression of the dissipation (7), (8) and the corre-

sponding expression of IT Eq. (18). We finally obtain, in Lagrangian description
poC.T = —divQ + pyr + Ds VX € Q | (24)

where C, is the heat capacity, Q is the heat flux of Piola-Kirchhoff given by the Fourier law (22),
Dy is the internal source term per volume unit in the initial configuration, given by

2 2 2 = 2
Ds—nCV:CV—FT(—:F——nCV:CV). (25)

In this expression, the second term gives the power dissipation due to the variation of the
mechanical properties with respect to the temperature, whereas the first term is the power
dissipation due to the viscous behaviour of the material.

The local equations (23) to (25) are associated to the classical set of boundary conditions.

4.2

Variational formulation

The variational formulation of the quasi-static equilibrium problem is written under a per-
turbed Lagrangian form, [30]. Thus, the displacement i and the hydrostatic pressure p have to
cancel the following integral form (where o is a positive perturbation coefficient):

%meC(ﬁ?p):/ﬁzéfdv_ / ﬁ.(sﬁds_/poféﬁdV—i-/ép(]—l—ocp)dV, (26)
Q
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for all the test functions o, Jp.

The solution (#, p) must also locally satisfy the constitutive equations (18, 19) and the
incompressibility constraint (15), when the parameter o tends to zero. However, a choice of o
strictly positive but small, allows to obtain a solution satisfying approximately the in-
compressibility condition.

On the other hand, the temperature T has to cancel the following integral form:

sthef(:r):/(poch5T+@L(5T)?LVL(T)) dv - / Q- NoTds
o 00,

—/(Ds+p0r)5TdV , (27)
Q

for all the test functions 6T.

The FE approximation is classically introduced into the integral forms and yields a nonlinear
system of equations. The unknowns are the nodal displacements and the nodal temperatures.
Then, the mechanical and thermal problems are solved separately.

43
Finite element approximation

Mechanical problem
For the mechanical problem, a classical FE is built using the commonly called T6/P1 triangular
element, with a quadratic interpolation for displacement and a constant pressure. This element
satisfies the discrete LBB condition and yields stable pressure approximations, [31].

The hydrostatic pressure may to be discontinuous between the elements. It is considered
as an internal degree of freedom and thus eliminated by a static condensation at element
level.

Thermal problem

Using the same geometric discretization, the thermal problem approximation is based on a
linear interpolation for temperature. The global system so obtained is then solved by an explicit
Eulerian time-integration scheme.

44
Local solving of complementary law
For the mechanical problem, the construction of the elementary matrices and vectors requires

th:e evgluation, at each integration point, of the internal variable C, and the derivative term
0C,/OF. They are given by

%V(t)zf t,f(t),a(t)) on [to,to + Af], Cy(to) =Cy , (28)

v

7 ocC
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By means of an implicit Eulerian scheme, [32], the system of differential equations (28) gives on
[ts, t, + Ot] a sub-interval of [to, t, + At]

Ev(tn—s—l) - Ev(tn) + 5t§<tn+17f(tn-s—l),ﬁv(tn—&-l)) . (30)

Then, with a Newton-Raphson scheme, the obtained nonlinear system is solved.

The second system (29) is linear, so the solution could be approached by a classical Crank-
Nicholson scheme, with the same time step as used in (28), because the approximate solution of
this system is taken into account to solve (29).



4.5

Coupling algorithm

Since the time scales of the mechanical and thermal problems are very different, they can be
solved separately, [33]. The coupling between the two problems Fig. 2 is then taken into
account through the algorithm shown in Fig. 3.

The mechanical problem needs smaller time-increments than the thermal one. In other
words, it is possible to realise many mechanical increments without an actualisation of the
mechanical characteristics according to the temperature.

Moreover, during a mechanical step (less than one second), the evolution of the temperature
remains imperceptible. Therefore, in the numerical implementation, the coupling terms of (25),

= 0 =
:F and TﬁCV:CV,

El

oT

can be neglected. Thus, the source term Dy is reduced to the mechanical dissipation ®™. The
mechanical properties are updated according to the temperature obtained after a thermal cycle.
This means that the thermo-mechanical coupling algorithm comes to a fixed-point method on
temperature, as illustrated Fig. 2.

5
Validation and applications

5.1

Test description

In order to check if the proposed model can describe the thermo-mechanical behaviour of
elastomers, a two-layer elastomer-steel test piece has been instrumented, Fig. 4. The elastomer
part is made of dimethyl-vinyl-siloxan vulcanised by peroxide.

Mechanical problem|

U
Displacement
Mechanica Mechanica
properties dissipation
% Thermal problem g
Y

Temperature

Fig. 2. Thermo-mechanical coupling

| Initial temperature: T, |

il

4

Updating of mechanical properties

v

Solution of mechanical N Computation of D, and Ky
problem (m steps)

]

A4
Solution of thermal
problem (n steps)

Actual temperature: T

Updating of mechanical properties

Fig. 3. Coupling algorithm



The test piece is put into a thermal enclosure at a temperature of 27 °C, and subjected to
cyclic shearing deformation

y(t) = I'sin(2xnft) |

with a frequency f = 4.5 Hz. The amplitude I = 0.5 defines the relative shearing displacement
applied to the external armatures, while the central armature is fixed.
Two thermocouples, Fig. 5, measure the temperature on one of the elastomeric layers.

5.2

Material characteristics

The mechanical properties of the steel armatures are taken as classical values: Young modulus
E = 210000 MPa, Poisson ratio v = 0.3. For the elastomeric material, the parameters of the
Poynting-Thomson model are assumed to be temperature-dependent. These parameters are
determined from experimental measurements, like relaxation under axial traction and cyclic
shearing tests, using the following identification procedure:

(i) By identifying the average curve of a cyclic-shearing response, see Fig. 6a, to a shearing
hyperelastic curve (Hart-Smith model), a first set of values (cy, ¢z, ¢3) is estimated.

(ii) Then, through an adjustment to the relaxation test and by considering (¢, ¢;, ¢3) as given,
a; and 5 are determined.

(iii) Finally, a correction and the complete determination of all parameters is provided ac-
cording to a least-square fitting on the hysteresis curve of the shearing test. To do so, the
curve is decomposed in to an average curve and a difference one, obtained by the stress
difference at constant strain, see Fig. 6b.

These three steps are realised for different temperatures and followed by an Arrhenius-law
interpolation, [34], in order to obtain the evolution according to temperature as shown in Fig. 7.
The thermal properties of the materials are given in Table 1, [27].

53
Validation

Numerical simulation
In this section, the first series of computations is performed to determine the mesh-refinement
influence. Then, the results are analysed according to the computation time of each problem,
mechanical and thermal.

Due to the symmetry of the problem and the plane-strain hypothesis, the computation of the
shearing test has been carried out on a half cross section of the test piece.

<=,
10mm
<=,
25mm
-
40mm
Fig. 4. Two-layer test piece
C D

Elastomer

) Thermocouple

E
];__74/_._

_._751._.A

Fig. 5. Half cross section of the test piece. Position of the thermocouples
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Fig. 7. Elastomer parameters in dependence of the temperature

For the thermal problem (see Fig. 5 and Table 3), linear triangular, bilinear quadrilateral and
linear flux elements are used to mesh, respectively, the elastomeric layer, the metallic armatures
and the boundaries. A zero-flux condition is applied on the symmetry axis, and a linear
convective heat-transfer condition is imposed on the other boundaries.

For the mechanical problem using the plane strain hypothesis, the mesh is the same as the
thermal one (without the linear flux elements), but a quadratic interpolation is used. The
boundary conditions are given in Table 3.

Mesh influence
Three spatial discretizations are selected (Fig. 8. and Table 2). The characteristics of each mesh
are given in the Table 2. Each computation were decomposed into three times (mechanical
cycle At = 0.89s followed by a thermal cycle At = 200s.

Some mechanical and thermal results are presented for the purpose of analysing the mesh
refinement influence, Fig. 9. On Fig. 9a, the quantity (p — po)/po is evaluated, where p is the

10



Lagrange multiplier in the center of the elastomeric layer and p is its analytical value in the case
of an uniform shearing. We see that for the mesh B, we have an error of only 3% . Concerning the
amplitude of the reaction force, the meshes B and C show a difference of less than 3%, Fig. 9b.
The ratio of the mechanical dissipation and the external power gives also less than 1% of
variation, Fig. 9c. Finally, in Fig. 9d, the temperatures in the center (thermocouple 1, Fig. 5) of

Table 1. Thermo-physical properties of the materials

Elastomer Steel
Conductivity factor K (W - m™" - K™") 0.127 45.0
Specific heat capacity poCe (J - m>- K1) 0.74E+06 3.5E+06
Transfer coefficient h (W - m™2 - K™}) 17.0 30.0

Table 2. Numbers of elements and degrees of freedom according to the problem and the refinement

Problem Refinement A B C

Mechanical problem Elements 130 400 1420
d.o.f. (Disp.) 742 1938 6250
d.o.f. (Pres.) 80 320 1280

Thermal problem Elements 171 459 1515
d.of. (Temp.) 121 285 853

Table 3. Boundary conditions

Segments Mechanical boundary conditions Thermal boundary conditions
AB Stress free Convective flux

BC u=U,u,=0 Imposed temperature

CD Stress free Convective flux

DE Stress free Convective flux

EF Uy =0,u,=0 Imposed temperature

FA u, = 0 (symmetry) Zero flux (symmetry)

|
/|

coarsemesh (A)

Fig. 8. Mesh refinement

medium mesh (B)

accurate mesh (C)



the elastomeric layer are compared at the time 50 s for the three meshes. The results for the
models B and C are quite the same.

These investigations point out that the more accurate mesh C gives the best results; but it
also demands more CPU time. A good compromise between the results validity and the
computational time seems to be the mesh B. For these reasons, all the next simulations pre-
sented in this paper have been done with the mesh B.

Time influence
In order to analyse the influence of the time partition for the sequential thermo-mechanical
coupling, two strategies are checked.

Strategy (i): three times a mechanical cycle At = 0.89 s followed by a thermal cycle
At =200s;

Strategy (ii): four times a mechanical cycle At = 0.89 s followed by a thermal cycle At = 50s
and

two times a mechanical cycle At = 0.89s followed by a thermal cycle At = 200s.

Figure 10 presents the evolution of the relative difference between the temperature in the
piece centre obtained with these two strategies. The curve grows to a relative value of about 7%
and then decreases to a stable value of 3% when the temperature tends to the stationary
solution.
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4,00% 1110
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1100
2,00% d d
1,00% 1090
0,00% ‘ ‘ L) 1080 ; ;
0 500 1000 1500 0 500 1000 1500
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0,50% *> 51,5
0,00% T T 51,0 T T
0 500 1000 1500 0 500 1000 1500
Number of elements Number of elements
(c) Numerical dissipation (% external power) (d) Temperature (°C)
Fig. 9. Mesh influence
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0 100 200 300 400 500 600 700

time (s)

Fig. 10. Relative difference of the temperature in the center of the parts according to the time partition
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The time discretization (ii) seems to be more consistent with the important variation of the
temperature at the beginning, since it takes better into account the quick variation of the
mechanical characteristics. In the following simulations, the configuration (ii) will be adopted.

54
Numerical results and comparison with experiment

Mechanical results
Figure 11 shows the map of the time-average of the mechanical dissipation power on the
deformed shape of the specimen, and this for a few cycles. It can be noticed that the maximums

1" cycle 2" cycle 4" cycle 6" cycle

.000E+D0
.100E+00
.200E+00
.300E+DD
.400E+00
. 500E+00
.600E+00D
. 7T00E+00
.BO0E+DD
.900E+00
.100E+01

Fig. 11. Map of the mean dissipation over time power (in MW m~3)

&

200
300

cycle 1
----cycle3

Reaction force (N)

Displacement (mm)

Fig. 12. Reaction force in dependence of the displacement (stabilised cycles)
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occur in the corners of the elastomer bloc. The maps of the last two cycles are nearly the same.
The same phenomenon is established in the evolution of the reaction force with the dis-
placement, Fig. 12. The three curves indicate to a loss of the stiffness. It can be concluded that
the spatial and the time stabilisations are reached after the fourth cycle. Figure 13 presents the
evolution over time of the spatial average of the dissipated power (continuous line) and its time
average (dashed line) during few first mechanical cycles. It reaches a stabilised value after a few
mechanical periods. This seems to prove that it is sufficient to consider only three periods for a
mechanical cycle.

Thermal results and comparison with measurements
It can be noticed that the temperature initially increases near the maximum dissipation zone
(in the corners), and then spreads toward the center of the elastomer, Fig. 14.

The curves displayed in Figs. 15, 16 enable us to make two remarks. If we consider that the
entire mechanical dissipation is transformed into heat, we can see a wide difference between the
computed results and the experimental results on Fig. 17.
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Fig. 13. Variation of the dissipation power (continuous line) and its mean over time (dashed line)

0

mechanical time

i . 270E+02 | T 2708402
i . Z73E+02 i 2TRE+02 .32ARHIZ
i . 2TBE+02 i . Z83E+02 .IBEE+D2
B ooropece | QA4E+0Z
| e B socpine
b caseaz b sozpaaz L SEOE+HIZ
I .2HBE+DZ l .309E+02 . 4268+02 -G18E+02
291 E+02 .31 5E+02 GTRE+DZ
L294E+02 3Z2ZE+HD2 .734E+D2
. 29TE+HI2 .32EE+02 LTH2EH02
. 300E+D2 . 335E+02 .BS0E+02
t=10s t=20s t=100s t=600s

Fig. 14. Evolution of the temperature field over time
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Fig. 15. Comparison of the computed temperature with the measured temperature in the center of the
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Fig. 16. Comparison of the computed temperature with the measured temperature after a correction of the
rate of transmitted power in the center and the corner of the elastomer

To fit the computed results with the experimental ones, we must assume that only a part of
the mechanical dissipation is transformed into heat. In the Fig. 16, the evolution of the nu-
merical temperature in the center and in the corner (thermocouple 3, Fig. 5) of the elastomer
layer is plotted, with only 70% of mechanical dissipation taken in the thermal computation into
account. We state that the two curves have a good agreement with the experiment.

This result was already invoked in previous works concerning the thermo-mechanical be-
haviour of other classes of materials, like metallic material, [35], and more recently, in [36], for
filled rubber vulcanizates like styrene-butadiene rubber (SBR) and natural rubber. Thus, we
can suggest that the rest of the energy is used by the material to reorganise its molecular
structure. This possibility requires more investigations and provides a perspective for future
works.

6

Conclusion

A new model has been developed to deal with mechanical and thermal problems, allowing for
an interaction of these two phenomena.

This explicit coupling has a solving algorithm adaptable to the two distinct time-scales.
Moreover, the developments of these two models are totally independent. As an immediate
consequence, they can be easily and separately upgraded. For the mechanical model, a hyper-
viscoelastic behaviour is proposed, initially based on the Hart-Smith hyperelastic law ac-
cording to the incompressibility constraint and on a simple form of the pseudo-potential of
dissipation. The thermal formulation is carried out under finite transformation hypothesis in
the lagrangian configuration in order to fit it to the mechanical formulation. The thermo-
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viscoelastic model has allowed the simulation of the shearing test with a specimen subjected to
cyclic loading. The simulation gives an estimation of the dissipation field and consequently the
evolution of temperature in the elastomeric layer.

The examination of the dissipation field allows to notice in the initial steps the prominence
of two high dissipation zones. They are located at the corners of the elastomeric layer where the
shear is the more important. Over time, the field tends to become uniform.

The computed temperature field is similar to the experimental one, but the internal source
term seems to be overestimated. This could be explained by the fact that a part of this source is
used for internal restructuring.

This phenomenon could provide an object for future research. A formulation including a
new internal variable, could help to characterise the microscopic restructuring.
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