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et Marie Curie-Paris 6, Paris, France, 7UMR 7207, CNRS/MNHN/UPMC, Muséum National d’Histoire Naturelle, Paris, France

Abstract

Genes encoding proteins involved in sperm-egg interaction and fertilization exhibit a particularly fast evolution and may
participate in prezygotic species isolation [1,2]. Some of them (ZP3, ADAM1, ADAM2, ACR and CD9) have individually been
shown to evolve under positive selection [3,4], suggesting a role of positive Darwinian selection on sperm-egg interaction.
However, the genes involved in this biological function have not been systematically and exhaustively studied with an
evolutionary perspective, in particular across vertebrates with internal and external fertilization. Here we show that 33 genes
among the 69 that have been experimentally shown to be involved in fertilization in at least one taxon in vertebrates are
under positive selection. Moreover, we identified 17 pseudogenes and 39 genes that have at least one duplicate in one
species. For 15 genes, we found neither positive selection, nor gene copies or pseudogenes. Genes of teleosts, especially
genes involved in sperm-oolemma fusion, appear to be more frequently under positive selection than genes of birds and
eutherians. In contrast, pseudogenization, gene loss and gene gain are more frequent in eutherians. Thus, each of the 19
studied vertebrate species exhibits a unique signature characterized by gene gain and loss, as well as position of amino
acids under positive selection. Reflecting these clade-specific signatures, teleosts and eutherian mammals are recovered as
clades in a parsimony analysis. Interestingly the same analysis places Xenopus apart from teleosts, with which it shares the
primitive external fertilization, and locates it along with amniotes (which share internal fertilization), suggesting that
external or internal environmental conditions of germ cell interaction may not be the unique factors that drive the evolution
of fertilization genes. Our work should improve our understanding of the fertilization process and on the establishment of
reproductive barriers, for example by offering new leads for experiments on genes identified as positively selected.
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Introduction

A lot of barriers are able to prevent a successful reproduction.

Dobzhansky proposed a classification of species isolation from

prezygotic to postzygotic isolation [5]. In postzygotic isolation,

a zygote is formed but the hybrid offspring is not viable or sterile.

In prezygotic isolation, species could not mate because of

a difference in sexual behavior or for mechanical issues. Another

step of prezygotic isolation is the lack of interaction between male

and female gametes, the sperm-egg interaction being a several

steps process that leads to a successful fertilization. Although

details vary between species, a successful fertilization requires three

main steps in sperm-egg interaction [6]. The first step is the

recognition and the binding between sperm and the extracellular

matrix surrounding eggs (ECM), called the chorion in teleosts, the

vitelline envelope in birds, and the zona pellucida (ZP) in

mammals. The second step, required for the sperm to penetrate

through the egg coat, is the acrosome reaction. The third step is

the binding and the subsequent fusion between sperm and the

oolemma, the plasma membrane of the oocyte. Many experiments

have been performed in order to determine the importance of

candidate proteins during fertilization. Surprisingly, knock-out

experiment of B4GT1 or targeted mutation that abolished the

protease activity of ACR in mouse show that these proteins are

important but not essential [7,8]. Several studies showed that

genes involved in sperm-egg interaction exhibit a particular

evolution. For example, a recent study shows that several ZP genes

have been lost during evolution of vertebrates [9]. ZP1 gene, one

of the glycoproteins that compose the ZP, has been lost during

evolution in cattle, pig, cat and dog, whereas ZP4 gene has been

lost in mouse. Moreover, ZPAX and ZPD genes, which are

present in chicken, have been lost in mammals. In addition,

several genes involved in fertilization such as ZP3, ADAM1,

ADAM2, ACR and CD9 have been shown to evolve under
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positive selection [3,4]. The authors hypothesized that these

positively selected amino acids might play a role in the specificity

of sperm-egg interaction between species because they are located

in the putative sperm-egg binding domain. Despite the fact that

several studies suggested the involvement of positive Darwinian

selection on sperm-egg interaction genes, none has been done

exhaustively. In our study, we have listed all genes which have

been experimentally shown to be involved in one vertebrate and in

at least one step of the sperm-egg interaction, on both sperm and/

or oocyte, and on 19 species with fully-sequenced genomes. We

have studied all these genes with an evolutionary perspective by

searching for gene gains and losses, as well as positive selection,

a divergent evolution of these genes among vertebrate species

potentially leading to reproductive isolation.

Results and Discussion

Rates of Gene Gain, Loss and Pseudogenization are
Clade-dependent Variables
We identified 69 genes from the literature (Figure 1 and

Table S1) that encode proteins experimentally known to be

involved in at least one of the three steps described above. These

genes are well studied in mouse and cattle that are common

models for studies on physiology and reproduction. We classified

all genes into three main groups according to which step they are

involved in, excepted CRISP1 that is involved in all three steps of

fertilization [10,11,12]. Thanks to phylogenetic analyses, we found

several gene duplications, as well as pseudogenizations, among

genes involved in the three main steps of fertilization. In particular,

we found evidence for (i) gain of FUT5 and Zp3r genes in primates

and rodents, respectively, (ii) pseudogenization of SPA17 and

ADAM15 genes in chicken, ZAN, ADAM1a and ADAM3 in

human, ADAM3 in chimpanzee, spermadhesins in dog, IGSF8

and SPESP1 in horse, as well as ZPAX in dog, and the known ZP

pseudogenes published elsewhere [9] (ZPB/ZP4 in mouse, ZP1 in

cow and dog, ZPAX in primates and cow); and (iii) specific

duplication events of ADAM genes in therian mammals,

spermadhesins in ungulates, as well as the ACR gene in Xenopus

(14 copies) and HSPE1 in macaque (11 copies). For each gene, we

have systematically assessed, by optimizing gene presence,

number, and type (functional or pseudogene) on a time-calibrated

reference phylogeny, the absolute rate of the following four types

of events: gene gain, duplication, inactivation (resulting in

a pseudogene) and complete loss (presumably through deletion,

although incomplete genome annotation may have led to over-

estimation of loss rate). The overall rate of gene appearance (genes

that appear only in some monophyletic groups), pseudogenization

and deletion events differs strongly between clades and type of

event (Figure 2a). By taking into consideration the number and the

geological age of sampled lineages, we found that these three types

of events are far more frequent in eutherians than in birds and

teleosts. A phylogeny-informed binomial test shows that these

differences between eutherians and teleosts are statistically

significant, differences between eutherians and birds are also

statistically significant for deletions and gene appearance. How-

ever, a possible bias stems from the fact that our list of gene is

composed almost exclusively of genes identified in eutherians and

thus, the rates of the different events may be overestimated in this

clade. No pseudogene has been identified in teleosts. The

duplications occur at more comparable rates across these three

taxa but tend to occur slightly more frequently in eutherians than

in teleosts and aves. The consensual conclusion is that duplication

rates for most of the genes are higher in teleosts than in other taxa

due to the third whole genome duplication, specific to teleosts

[13,14]. Consequently, our results are surprising. They reflect the

greater geological age of lineages of teleosts, resulting in

a phylogenetic diversity twice as great as eutherians, despite

a lower number of included species (Figure 2a). Thus, a greater

number of events per lineage is required in teleosts to yield

comparable rates.

Genes of Teleosts are More Subjected to Positive
Selection
We have also submitted the protein sequence to the Phylea-

sProg web server [15] (http://phyleasprog.inra.fr/) to determine

selective pressures that shape the evolution of these genes and used

a new phylogenetically-informed test to compare the amount of

positive selection in various clades. The calculation of positive

selection is globally based on rate of non-synonymous (dN) and

synonymous (dS) substitutions [16]. The accumulation of synon-

ymous substitutions (saturation of dS) may create a problem to

detect positive selection with sequences from highly divergent

species such as human and zebrafish with some methods.

However, a previous study showed that the method we use to

detect positive selection, i.e. maximum likelihood estimate, is

robust to dS saturation [17]. The calculation was possible for 48

genes and we found amino acids under positive selection for 33 of

them (Figure 1). Among teleosts, birds and eutherians taxa, we

found various patterns of positive selection. The FN1 gene has sites

under positive selection in 7 species for which data are available.

The number of genes under positive selection in each species

ranges from 0 (horse and human) to 10 (opossum). Positive

selection occurs in the three groups of genes, suggesting the

presence of an evolutionary pressure in the three steps of

fertilization.

Our comparison of the intensity of positive selection shows that

genes involved in sperm-oolemma fusion, including genes of the

integrin family (IGSF8, ITGa9, ITav, ITGa6), are mostly

subjected to positive selection in teleosts, but much less so in

mammals (Figure 2b). The difference between teleosts and birds

(p,0.05) and between teleosts and eutherian mammals (p,0.001)

are statistically significant whereas the difference between birds

and eutherian mammals is not. This result is surprising for teleosts

because we expected to find more amino acids under positive

selection for genes involved in the sperm-ECM binding, which

would contribute to the first barrier in free-spawning conditions.

In particular, positive Darwinian selection has been shown to play

a role in the rapid evolution of genes involved in sperm-egg

binding in three other free-spawning taxa, sea urchin, mussel and

abalone [18,19,20,21]. The comparisons of the intensity of positive

selection between taxa for sperm-ECM binding and between taxa

for acrosome reaction are not significant. When analyzed globally,

genes involved in the three steps of gamete interaction show

a similar, but less marked, pattern in which the only statistically

significant difference is between teleosts and eutherian mammals

(p,0.05) (Figure 2c). Besides, in contrast to previous studies [4],

we did not find positive selection for ZPC/ZP3, in agreement with

more recent data obtained on a larger number of species [22]. We

also show that several genes are positively selected in more than

one species, such as ACE that exhibits positive selection in

chimpanzee, opossum, Xenopus, and zebrafish.

Amino Acids under Positive Selection are not Located in
known Functional Domains of Proteins
In order to project our previous results of positive selection on

3D structures, we have built 23 tridimensional models of 6 proteins

(ACE, ARSA, C1QBP, ITaV, PDIA3 and UCHL3) from species

An Evolutionary Analysis of Gamete Interaction
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where positive selection has been detected (Figure 3 and Figure S1

to S5). These 6 proteins were chosen because PDB template

structures were available [23]. Firstly, we show that amino acids

under positive selection are never located in the domain involved

in known biological role (for ACE, ARSA, PDIA3 and UCHL3).

This suggests that these residues are involved in other secondary

functions such as interaction with partners or in the folding of the

protein. Secondly, we show that amino acids under positive

Figure 1. Signature of evolution of genes involved in sperm-oocyte interaction in Vertebrates. Genes (names are indicated on the top)
are classified into three main functional groups (from left to right): sperm-zona pellucida binding, acrosome reaction, and sperm-oolemma fusion.
Species are indicated in the tree (left). Blue square: duplication; purple square: positive selection; pink square: duplication + positive selection. Black
square: pseudogene; Black dot: no event. Black circle: no calculation of positive selection. White square: no gene found.
doi:10.1371/journal.pone.0044548.g001

Figure 2. Rate of gene appearance, gene duplication, pseudogenization, loss and intensity of positive selection in Teleostei, Aves
and Eutheria. a. Rate of events per million years (Myr) per lineage for the set of genes studied. This includes up to 69 genes, but in most cases, the
number of relevant genes is lower because some types of events cannot happen in some taxa (losses or duplications cannot happen if a gene is
primitively absent, and gains cannot occur in a clade if the gene appeared before the base of a given clade), and we have incorporated that factor
into our calculations to obtain comparable rates across taxa. The geological age of lineages is used in the rate calculation through the phylogenetic
diversity of the clades. b and c. Proportion of genes under positive selection in Teleostei, Aves and Eutheria for genes belonging to the third step, the
sperm-oolemma fusion (B), and for all genes (C). Three types of confidence intervals are shown: 78%, 90% and 97% representing testing at 0.05, 0.01
and 0.001 probability thresholds, respectively. Statistically significant comparisons, for which confidence intervals do not overlap, are indicated.
doi:10.1371/journal.pone.0044548.g002
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selection, for the same protein, have different location between

species. Thus, we suppose that the function of these proteins in the

process of fertilization may differ between species. This hypothesis

is supported by a recent study that has emphasized the importance

of structural architecture of the egg coat and its importance in

fertilization [24]. Thus, we postulate that positive Darwinian

selection could contribute to slight modifications of the architec-

ture of egg or sperm coat by changing key amino acids in some

taxa. These architectural modifications may also create or

reinforce reproductive barriers. Experimental investigations must

be done (i) to identify amino acids involved in sperm-egg

interaction in these proteins, (ii) to study the expression and the

role of these genes in gametes and (iii) to identify their function in

sperm-egg interaction in a greater number of species.

In conclusion, we study the evolution of 69 genes involved in the

sperm-egg interaction. This work should help to improve our

understanding of the evolution and the mechanism of fertilization

in vertebrates, which still remains puzzling. In particular, the

evolution of proteins present on male and female gametes can lead

to reproductive barriers at the level of sperm-egg interaction in

vertebrates. The variation between species regarding positive

selection patterns as well as gain or loss of certain genes involved in

fertilization could actually lead to the appearance or the

reinforcement of reproductive barriers. The relationship between

positive selection and molecular adaptation has been experimen-

tally shown previously [25,26]. Our work provides a list of

potential targets, i.e. amino acids under positive selection, for

targeted mutagenesis experiments to see if these amino acids are

indeed involved in reproductive barriers between species. How-

ever, this list of genes should be completed after further

experiments on other species. All this should improve significantly

our understanding of the appearance of prezygotic isolation

mechanisms, and hence, of the speciation process, which is of

paramount importance in generating biodiversity.

Materials and Methods

Selection of Data
This study has sampled the genome of 19 bony vertebrate

species that have been fully sequenced (Bos taurus, Sus scrofa, Equus

caballus, Canis familiaris, Rattus norvegicus, Mus musculus, Homo sapiens,

Pan troglodytes, Macaca mulatta, Monodelphis domestica, Ornithorhynchus

anatinus, Gallus gallus, Taeniopygia guttata, Xenopus tropicalis, Tetraodon

nigroviridis, Takifugu rubripes, Gasterosteus aculeatus, Oryzias latipes and

Danio rerio). For all identified genes, the corresponding Ensembl

protein ID was retrieved from Ensembl database and submitted to

Figure 3. 3D structures of N and C domain of ACE in platypus, Xenopus, chimpanzee and zebrafish. ACE structures have been modeled
for four species based on human PDB structure (PDB: 1O8A) [36]. This enzyme is composed of two homolog N and C domains, each containing
a catalytic site composed by two histidines in a conserved -HEXXH- zinc-binding motif [37] and a glutamate as the third ligand 24 residues
downstream this motif [38]. These three binding sites are indicated in yellow, whereas amino acids under positive selection are in pink. ACE protein is
expressed by sperm. Gene knockout experiments of ACE in mouse results in an impaired uterotubular sperm migration and a reduced ability to bind
the zona pellucida of the egg [39,40,41].
doi:10.1371/journal.pone.0044548.g003
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the PhyleasProg web server [15]. For each submitted Ensembl

protein ID, the PhyleasProg web server interrogates the Ensembl

database to retrieve orthologs and paralogs, the orthology/

paralogy relationships assignment being based on a phylogenetic

approach in Ensembl. All phylogenetic trees were reconstruct by

PhyleasProg using the TreeBeST program (http://treesoft.

sourceforge.net/treebest.shtml) and carefully examined before

interpreting selective pressure results, also calculated by Phylea-

sProg. Selective pressure results are systematically verified and

eventually corrected by synteny analysis as previously described by

Tian, et al. [27]. Thus, calculations were performed with supposed

correct orthologs. To score the presence, number and type of

genes in the data matrix, a search for pseudogenes was

systematically performed in the concerned genomes for genes for

which no ortholog has been identified in at least one of the species

of interest. The pseudogene status was inferred for a gene in

a genome only if we have found a stop codon or an indel in the

sequence identified by the similarity search in the syntenic locus in

comparison with the other species of interest. Moreover, a search

for duplicates was realized by using phylogenetic trees available in

Ensembl and accessible via the Ensembl ID used for PhyleasProg

and summarized in the Table S1.

Inference of Positive Selection
The inference of selection was performed by PhyleasProg with

branch-site models of codeml of the PAML package, with each

ortholog branch tested for positive selection. Multiple alignments

were systematically and carefully examined to avoid all false

positive results. In particular, amino acids predicted to be under

positive selection that were at the boundary of the alignments were

not considered because doubtful. We also eliminated genes for

which positive selection was due to sequence errors in Ensembl

according to a comparison with other available sequences from

other database such as RefSeq in NCBI (Figure S6 to S8). Each

branch of each phylogenetic tree was tested for positive selection.

So we performed multiple test corrections by controlling for the

false discovery rate (FDR) using the R package QVALUE [28].

Results are considered significant with a threshold of q=10% of

false positives. Sites with posterior probabilities of Bayes Empirical

Bayes analyses superior to 95 or 99% were considered as positively

selected. Datasets with less than 10 sequences, the minimum

threshold required to obtain significant results, with excessively

divergent sequences, or with sequences of genes for which

annotations are not reliable were not retained for subsequent

analysis (Figure 1). MODELLER [29] was used to build homology

models of the 3D structure of proteins when possible and amino

acids under positive selection and essential functional residues

were localized on them.

Comparison of Evolutionary Rates and the Intensity of
Positive Selection Across Clades
Character history was inferred using parsimony optimization

onto our rooted tree. In most cases, this yielded an unambiguous

polarity. In a few cases, such as for the character ZPB/ZP4, the

ancestral condition could not be unambiguously resolved using

parsimony; it was then resolved using additional criteria. For

instance, in that case, one of the two main clades, Teleostei, had

the state "absent", whereas the other main clade, Tetrapoda, had

the state "single copy". In such cases, we assumed that absence was

primitive, and scored a gain for Tetrapoda. All cases of losses

located on other parts of the tree (not on one of the two daughter-

branches of the basalmost node) were inferred from parsimony

optimizations whose polarity, in that case, is unproblematic.

Similarly, when one of the two basalmost branches can be inferred

to have had a single copy whereas the other could most

parsimoniously have two or more, we inferred that the presence

of a single copy was primitive, based on the principle that the most

common condition is likely to be primitive. This situation was

encountered in the character ZPAX, for which Tetrapoda have

a single copy, whereas Teleostei can most parsimoniously be

inferred to have had two or three. To assess evolutionary rates, we

optimized the 69 discrete characters representing gene presence,

number and type (functional gene or pseudogene) onto the

reference tree (Figure S9) and scored the occurrence of events of

four types (gene appearance, duplication, transformation into

a pseudogene, or loss) in three clades (Teleostei, Aves, Eutheria).

We considered the basal branch subtending each of these three

taxa as being part of it, and this is consistent with the fact that 19

sampled taxa in this study do not include representatives of both

basalmost branches of these clades (e.g. paleognaths are not

among the two birds sampled). We then divided the number of

events of each type in each clade by that clade’s sampled

phylogenetic diversity index [30] (the sum of branch lengths,

including of the basal branch). We then divided the resulting

number by the proportion of the 69 genes in which such changes

could occur in each clade. The last operation compensates for the

fact that several genes present in eutherian mammals are absent in

teleosts, and this avoids underestimating the rate of gene

duplication in teleosts. Thus, origin of these genes could occur

in teleosts, but not duplication, inactivation, or deletion. To

statistically compare the rates between teleosts and eutherians, we

took into consideration the sampled phylogenetic diversity of each

clade and the number of genes for which each event was possible

to assess the relative probability of occurrence of each event under

the null hypothesis that these events are clade-independent. We

then assessed the probability that a distribution at least as extreme

as the observed one arises under the null hypothesis using

a binomial test implemented in GraphPad (http://www.graphpad.

com/quickcalcs/binomial2.cfm).

To compare the intensity of positive selection in the three clades

of interest (Teleostei, Aves, Eutheria), we computed the inferred

ancestral value of each clade using squared-change parsimony [31]

in Mesquite [32]. Confidence intervals of these values were

computed using phylogenetic independent contrasts [33] using the

PDAP:PDTREE module [34] of Mesquite. These were used to

assess statistical significance of the differences in ancestral values of

each clade. Our method is derived from the continuous analysis

developed for heterochrony analysis of continuous characters [35],

a method whose statistical properties (especially power and type I

error rate) have already been assessed using simulations. However,

we improved a bit the method to more fully incorporate

uncertainty about nodal estimates; instead of comparing a nodal

value with the confidence interval (CI) of another clade, we

compare the confidence intervals of both clades. This allows using

narrower CIs because the probability that both nodal values

actually lie outside the computed CI at a given error threshold is

equal to the square of that threshold. As a result, instead of

comparing a nodal value with the 95% CI (0.05 probability

threshold), we compared the CIs at 78% of both clades because

the square of 0.22 is just under 0.05 (we rounded off to the nearest

higher percentage, which should make the test slightly conserva-

tive). Thus, if the two compared CIs do not overlap, we conclude

that the difference is statistically significant. This method thus

incorporates uncertainty in the estimates of all compared nodal

values. The fact that data from all taxa are used to compute

ancestral values should also make the test conservative because this

should tend to make ancestral estimates of sister-taxa more similar

An Evolutionary Analysis of Gamete Interaction
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to each other than if the ancestral values were estimated for each

clade separately.

Supporting Information

Figure S1 3D structure of ARSA in chicken, chimpanzee
and medaka. The three structures were modeled with human

ARSA structure as template (PDB: 1N2K) [105]. The active site of

the enzyme is represented in yellow, amino acids under positive

selection in pink. ARSA is expressed by the spermatozoa; its

involvement in the fertilization process was demonstrated with

antibodies directed against ARSA. When the sperm is pretreated

with these antibodies, their ability to bind the zona pellucida is

reduced [71].

(TIF)

Figure S2 3D structures of C1QBP in opossum and
zebrafish. Both structures were modeled with human P32 as

template (PDB: 1P32) [106]. Amino acids under positive selection

are in pink. The C1QBP glycoprotein is localized on sperm; its

participation in the fertilization process was demonstrated using

anti-C1QBP antibodies. The interaction between sperm and zona

pellucida is suppressed when the sperm is pretreated with these

antibodies [107].

(TIF)

Figure S3 3D structures of ITav in cow, rat, green
spotted pufferfish, medaka and zebrafish. Four structures
were modeled with human avb3 integrin as template (PDB: 1L5G)

[108]. The structure presented for the cow is the template itself.

Amino acids under positive selection are in pink. This integrin is

expressed by both oocyte and sperm. The pretreatment of sperm

with anti ITav antibodies significantly decreases the sperm-zona

pellucida binding and the fertilization [109].

(TIF)

Figure S4 3D structures of PDIA3 in green spotted
pufferfish, japanese pufferfish and zebrafish. The three

structures were modeled with human ERp57 as template (PDB:

3F8U) [110]. Catalytic motifs of the protein are in yellow, amino

acids under positive selection are in pink. PDIA3 is expressed on

sperm in the acrosomal region. Its role in the fusion process of

sperm and oolemma was demonstrated with the use of anti-PDIA3

antibodies [89].

(TIF)

Figure S5 Models of the 3D structures of UCHL3 in
opossum and stickleback. The two structures were modeled

with human UCHL3 as template (PDB: 1UCH) [111]. Amino

acids corresponding to the catalytic site of the enzyme are

represented in yellow, amino acids under positive selection in pink.

UCHL3 protein is present on both sperm acrosome and oocyte

cortex. A study showed that UCHL3 is an ubiquitin C-terminal

hydrolase and is involved in antipolyspermy defense during

porcine fertilization [78].

(TIF)

Figure S6 An example of a sequence error in Ensembl.
The sequence presented in (a) is the protein sequence of the gene

PDIA3 from Xenopus. Amino acids in red and orange are those

which have been detected as positively selected by PhyleasProg. A

tBLASTn has been performed with this sequence against EST

database of NCBI. The result of the BLAST is presented in (b),
the domain which contains amino acids under positive selection in

(a) is not retrieved. A new sequence for Xenopus was searched in

NCBI RefSeq database. The sequence of the best BLAST hit is

submitted to a tBLASTn against the EST database of NCBI for

verification (c). The new identified sequence from NCBI replaced

in this case the sequence from Ensembl.

(TIF)

Figure S7 An example of a doubtful amino acid under
positive selection. The amino acid in red in the sequence of the

rat (Rattus norvegicus) was found as positively selected in the

alignment of protein sequences of the gene CD46. Because it is

located at the boundary of the alignment, this amino acid is not

considered, because doubtful.

(TIF)

Figure S8 An example of reliable amino acids under
positive selection. Amino acids indicated in red in the sequence

of the platypus (Ornithorhynchus anatinus) are considered as reliable in

this multiple sequence alignment of ACE protein sequences.

(TIF)

Figure S9 Time-calibrated reference phylogeny used
for all phylogeny-informed analyses. This tree follows

classical time-calibrated phylogenies of teleosts [112] and mam-

mals [113]. The divergence time between the chicken and zebra

finch follows a recent review paper [114]. The other divergence

times derive from a review of paleontological and molecular dates

[115]. The names of several higher taxa are placed, with those

most discussed in the text in bold type. The scale to the right gives

approximate divergence times (in millions of years).

(TIF)

Table S1 Genes included in the analysis.

(DOCX)
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