Surface enhanced Raman scattering with gold nanoparticles: effect of particle shape. - Université de Tours Accéder directement au contenu
Article Dans Une Revue Analytical Methods Année : 2014

Surface enhanced Raman scattering with gold nanoparticles: effect of particle shape.

Résumé

The dependence of the Surface Enhanced Raman Scattering (SERS) by gold nanoparticles on their shape is examined using the organic dye, rhodamine 6G (R6G) as probe molecule. SERS has been explored extensively for applications in sensing and imaging, but the design and optimisation of efficient substrates is still challenging. In order to understand and optimise the SERS process in nanoparticles, gold nanospheres and their aggregates, nanotriangles, and nanostars of similar dimensions were synthesised and characterised according to their average size, zeta potential and UV/visible absorption. SERS from R6G was negligible for unaggregated nanospheres at 532 nm, close to the maximum of the surface plasmon resonance (SPR) at 560 nm. Upon aggregation of the nanospheres, the SPR shifts to about 660 nm, attributable to local surface plasmon “hotspots” between the spheres, and the SERS signal of R6G is significantly increased, at 785 nm. In monodisperse gold nanotriangles, the SPR is located at [similar]800 nm, and significant SERS of R6G is observed using 785 nm as source, as is the case for gold nanostars, which exhibit a double SPR with maxima at about 600 nm and about 785 nm, attributable to the core sphere and vertices of the structures, respectively. In suspensions of equal nanoparticle and dye concentration, the SERS effect increases as nanospheres < nanosphere aggregates < nanotriangles < nanostars, clearly indicating that control over the number of local field hotspots can optimise the SERS efficiency. Notably, it is demonstrated that the SERS intensity per nanoparticle scales with the magnitude of the SPR absorbance at the excitation wavelength (785 nm), providing a clear guide to optimisation of the process experimentally.

Dates et versions

hal-01129037 , version 1 (10-03-2015)

Identifiants

Citer

Furong Tian, Franck Bonnier, Alan Casey, Anne E Shanahan, Hugh J Byrne. Surface enhanced Raman scattering with gold nanoparticles: effect of particle shape.. Analytical Methods, 2014, 6, pp.9116-9123. ⟨10.1039/C4AY02112F⟩. ⟨hal-01129037⟩

Collections

UNIV-TOURS
43 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More