B. Chang, N. Hawes, R. Hurd, M. Davisson, and S. Nusinowitz, Retinal degeneration mutants in the mouse, Vision Research, vol.42, issue.4, pp.517-525, 2002.
DOI : 10.1016/S0042-6989(01)00146-8

M. Mclean and J. Prothero, Three-dimensional reconstruction from serial sections. V. Calibration of dimensional changes incurred during tissue preparation and data processing, Anal Quant Cytol Histol, vol.13, pp.269-278, 1991.

C. Margo and A. Lee, Fixation of whole eyes: the role of fixative osmolarity in the production of tissue artifact, Graefe's Archive for Clinical and Experimental Ophthalmology, vol.233, issue.6, pp.366-370, 1995.
DOI : 10.1007/BF00200486

P. Sharp, A. Manivannan, H. Xu, and J. Forrester, The scanning laser ophthalmoscope???a review of its role in bioscience and medicine, Physics in Medicine and Biology, vol.49, issue.7, pp.1085-1096, 2004.
DOI : 10.1088/0031-9155/49/7/001

M. Paques, M. Simonutti, M. Roux, S. Picaud, and E. Levavasseur, High resolution fundus imaging by confocal scanning laser ophthalmoscopy in the mouse, Vision Research, vol.46, issue.8-9, pp.1336-1345, 2006.
DOI : 10.1016/j.visres.2005.09.037

C. Toth, D. Narayan, S. Boppart, M. Hee, and J. Fujimoto, A Comparison of Retinal Morphology Viewed by Optical Coherence Tomography and by Light Microscopy, Archives of Ophthalmology, vol.115, issue.11, pp.1425-1428, 1997.
DOI : 10.1001/archopht.1997.01100160595012

D. Huang, E. Swanson, C. Lin, J. Schuman, and W. Stinson, Optical coherence tomography, Science, vol.254, issue.5035, pp.1178-1181, 1991.
DOI : 10.1126/science.1957169

Z. Yaqoob, J. Wu, and C. Yang, Spectral domain optical coherence tomography: a better OCT imaging strategy, BioTechniques, vol.39, issue.6, pp.6-13, 2005.
DOI : 10.2144/000112090

S. Wolf and U. Wolf-schnurrbusch, Spectral-Domain Optical Coherence Tomography Use in Macular Diseases: A Review, Ophthalmologica, vol.224, issue.6, pp.333-340, 2010.
DOI : 10.1159/000313814

C. Regatieri, L. Branchini, and J. Duker, The Role of Spectral-Domain OCT in the Diagnosis and Management of Neovascular Age-Related Macular Degeneration, Ophthalmic Surgery, Lasers, and Imaging, vol.42, issue.4, pp.56-66, 2011.
DOI : 10.3928/15428877-20110627-05

H. Chung, B. Park, H. Shin, and H. Kim, Correlation of Fundus Autofluorescence with Spectral-Domain Optical Coherence Tomography and Vision in Diabetic Macular Edema, Ophthalmology, vol.119, issue.5, pp.1056-1065, 2012.
DOI : 10.1016/j.ophtha.2011.11.018

L. Ferguson, S. Balaiya, S. Grover, and K. Chalam, Modified protocol for in vivo imaging of wild-type mouse retina with customized miniature spectral domain optical coherence tomography (SD-OCT) device, Biological Procedures Online, vol.14, issue.1, p.9, 2012.
DOI : 10.1167/iovs.06-0815

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, and M. Longair, Fiji: an open-source platform for biological-image analysis, Nature Methods, vol.27, issue.7, pp.676-682, 2012.
DOI : 10.1038/nmeth.2019

F. Sennlaub, C. Auvynet, B. Calippe, S. Lavalette, and L. Poupel, deficient mice, EMBO Molecular Medicine, vol.48, issue.11, pp.1775-1793, 2013.
DOI : 10.1002/emmm.201302692

URL : https://hal.archives-ouvertes.fr/inserm-00315944

J. Lem, N. Krasnoperova, P. Calvert, B. Kosaras, and D. Cameron, Morphological, physiological, and biochemical changes in rhodopsin knockout mice, Proceedings of the National Academy of Sciences, vol.96, issue.2, pp.736-741, 1999.
DOI : 10.1073/pnas.96.2.736

A. Mehalow, S. Kameya, R. Smith, N. Hawes, and J. Denegre, CRB1 is essential for external limiting membrane integrity and photoreceptor morphogenesis in the mammalian retina, Human Molecular Genetics, vol.12, issue.17, pp.2179-2189, 2003.
DOI : 10.1093/hmg/ddg232

C. Grimm and C. Reme, Light Damage as a Model of Retinal Degeneration, Methods Mol Biol, vol.935, pp.87-97, 2013.
DOI : 10.1007/978-1-62703-080-9_6

H. Grossniklaus, S. Kang, and L. Berglin, Animal models of choroidal and retinal neovascularization, Progress in Retinal and Eye Research, vol.29, issue.6, pp.500-519, 2010.
DOI : 10.1016/j.preteyeres.2010.05.003

M. Adhi and J. Duker, Optical coherence tomography ??? current and future applications, Current Opinion in Ophthalmology, vol.24, issue.3, pp.213-221, 2013.
DOI : 10.1097/ICU.0b013e32835f8bf8

J. Jiao, B. Mo, H. Wei, and Y. Jiang, Comparative study of laser-induced choroidal neovascularization in rats by paraffin sections, frozen sections and high-resolution optical coherence tomography, Graefe's Archive for Clinical and Experimental Ophthalmology, vol.51, issue.1, pp.301-307, 2012.
DOI : 10.1007/s00417-012-2204-4

M. Fleckenstein, C. Issa, P. Helb, H. Schmitz-valckenberg, S. Finger et al., High-Resolution Spectral Domain-OCT Imaging in Geographic Atrophy Associated with Age-Related Macular Degeneration, Investigative Opthalmology & Visual Science, vol.49, issue.9, pp.4137-4144, 2008.
DOI : 10.1167/iovs.08-1967

G. Huber, S. Beck, C. Grimm, A. Sahaboglu-tekgoz, and F. Paquet-durand, Spectral Domain Optical Coherence Tomography in Mouse Models of Retinal Degeneration, Investigative Opthalmology & Visual Science, vol.50, issue.12, pp.5888-5895, 2009.
DOI : 10.1167/iovs.09-3724

L. Ferguson, D. Ii, J. Balaiya, S. Grover, S. Chalam et al., Retinal Thickness Normative Data in Wild-Type Mice Using Customized Miniature SD-OCT, PLoS ONE, vol.42, issue.6, p.67265, 2013.
DOI : 10.1371/journal.pone.0067265.t004

R. Wang, C. Jiang, J. Ma, and M. Young, Mice with Spectral Domain Optical Coherence Tomography, Investigative Opthalmology & Visual Science, vol.53, issue.7, pp.3967-3972, 2012.
DOI : 10.1167/iovs.12-9716

R. Spaide and C. Curcio, ANATOMICAL CORRELATES TO THE BANDS SEEN IN THE OUTER RETINA BY OPTICAL COHERENCE TOMOGRAPHY, Retina, vol.31, issue.8, pp.1609-1619, 2011.
DOI : 10.1097/IAE.0b013e3182247535

L. Carter-dawson and M. Lavail, Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy, The Journal of Comparative Neurology, vol.49, issue.2, pp.245-262, 1979.
DOI : 10.1002/cne.901880204

V. Bonilha, M. Rayborn, S. Bhattacharya, X. Gu, and J. Crabb, The Retinal Pigment Epithelium Apical Microvilli and Retinal Function, Adv Exp Med Biol, vol.572, pp.519-524, 2006.
DOI : 10.1007/0-387-32442-9_72

A. Giani, A. Thanos, M. Roh, E. Connolly, and G. Trichonas, In Vivo Evaluation of Laser-Induced Choroidal Neovascularization Using Spectral-Domain Optical Coherence Tomography, Investigative Opthalmology & Visual Science, vol.52, issue.6, pp.3880-3887, 2011.
DOI : 10.1167/iovs.10-6266

T. Liu, L. Hui, Y. Wang, J. Guo, and R. Li, In-vivo investigation of laser-induced choroidal neovascularization in rat using spectral-domain optical coherence tomography (SD-OCT), Graefe's Archive for Clinical and Experimental Ophthalmology, vol.88, issue.7, pp.1293-1301, 2013.
DOI : 10.1007/s00417-012-2185-3